Calphad Optimizer: SQL Insights on Refining, ML, and Quality Metrics

Bruno Reis, Florian Tang, Abdulmonem Obaied, Philipp Keuter, Moritz to Baben GTT-Technologies

CALPHAD Conference, 28th of May 2024

Thermodynamic Software

Thermodynamic Databases

Gr

Outline

- Introduction to Calphad Optimizer
- The SQLite results database
- Command line interface
- 1st Analysis: Optimization performance
- 2nd Analysis: Exploratory data analysis
- 3rd Analysis: Machine learning
- Conclusion

Introduction to Calphad Optimizer

Thermodynamic Software

-0-

-

Thermodynamic Databases

Why does GTT develop Calphad Optimizer

- Calphad should be accessible to more users
 - A GUI tool that can be understood by any material scientists
 - Yet, no power user should be lost
- FAIR data! Responsibility of GTT:
 - I: Interoperability
 - Provide data structures suited for open and accessible tools and workflows
 - R: Reproducibility

Make the outcome of optimizations reliably deterministic

- Higher throughput than established tools
 - Minimize necessary interaction during optimization

Calphad Optimizer

Start-up screen

C FactSage Calphad Optimizer	·		- 🗆 X
Calphad Optimize	r File ▼ Help ▼		
Experimental Data Parameters Optimization Results Phase Mapping	Load Database Experimental Data Parameters Optimization	Save Database	Status Calphad Optimizer started.
	Results Phase Mapping		

Calphad Optimizer Optimization control

Optimization

Selected experiments All Clear

- ✓ Hmix liquid Go To
- 🗹 Hmix bcc 🛛 Go To
- Hmix fcc Go To
- Solidus fcc (Ni) Go To
- Solidus bcc (Cr) Go To
- ✓ Liquidus bcc (Cr) Go To
- ✓ Liquidus fcc (Ni) Go To
- ☑ Ni solubility in BCC (Cr) _ reversed Go To
- Cr solubility in FCC (Ni) Go To
- ☑ Activity 1873 K Cr in liquid Go To
- Activity 1273 K Cr in bcc Go To

Selected parameters All Clear

Variable	Identifier	Parameter	Value	Minimum	Maximum	Coupling (?)
V1	LIQUID	L ⁰ Cr,Nir A	-1.23200e+4	-1.00000e+5	1.00000e+5	
V2	LIQUID	L ⁰ Cr,Ni, B	-1.12000e+0	-1.00000e+2	1.00000e+2	
V 3	LIQUID	L ¹ _{Cr,Ni} , A	5.01000e+3	-1.00000e+5	1.00000e+5	
V4	LIQUID	L ¹ _{Cr,Ni} , B	2.01000e+0	-1.00000e+2	1.00000e+2	
V5	FCC_A1	L ⁰ _{Cr,Ni:Va} , A	6.50000e+3	-1.00000e+5	1.00000e+5	
V 6	FCC_A1	L ⁰ Cr,Ni:Va, B	-1.28200e+1	-1.00000e+2	1.00000e+2	
V7	FCC_A1	L ¹ _{Cr,Ni:Va} , A	2.61400e+4	-1.00000e+5	1.00000e+5	
V 8	FCC_A1	L ¹ _{Cr,Ni:Va} , B	-9.29000e+0	-1.00000e+2	1.00000e+2	
V 9	BCC_A2	L ⁰ _{Cr,Ni:Va} , A	2.15700e+4	-1.00000e+5	1.00000e+5	
V10	BCC_A2	L ⁰ Cr,Ni:Va, B	-1.60400e+1	-1.00000e+2	1.00000e+2	
V11	BCC_A2	L ¹ _{Cr,Ni:Va} , A	2.43700e+4	-1.00000e+5	1.00000e+5	
V12	BCC_A2	L ¹ _{Cr,Ni:Va} , B	-4.92000e+0	-1.00000e+2	1.00000e+2	

Legend: Show

NOMAD

Optimizer settings

\$

Hyperparameters

Optimization control

Calphad Optimizer

Comprehensive results in real-time

Results

Summary

Data Group	No.	Error
Hmix liquid	Total: 62	2.08539e-2
🕨 🖈 Hmix bcc	Total: 11	1.21896e-1
🕨 🖈 Hmix fcc	Total: 15	2.04642e-1
🕨 ★ Solidus fcc (Ni)	Total: 14	3.30316e-2
 ★ Solidus bcc (Cr) 	Total: 10	1.55185e-2
 ★ Liquidus bcc (Cr) 	Total: 16	2.49819e-2
🕨 ★ Liquidus fcc (Ni)	Total: 13	1.60629e-2
🕨 ★ Ni solubility in BCC (Cr) _ reversed	Total: 23	5.29259e-2
🕨 🖈 Cr solubility in FCC (Ni)	Total: 31	5.64063e-1
🕨 ★ Activity 1873 K - Cr in liquid	Total: 53	3.39488e-2
 ★ Activity 1273 K - Cr in bcc 	Total: 20	2.93893e-3

Optimization progress

 Chart: All evaluations Add

Measured vs calculated

Status Testing experiments... All successful. Starting optimization... Optimization saved as /history/2024-05-06_12-33-36start.opt. Optimization started. Best evaluation 1: 7.06599e+1 Best evaluation 16: 3.38212e+1 Best evaluation 19: 1.77858e+1 •// Current evaluation: 26 Stop

Current error: 4.73527e+1 Elapsed time: 0:00:15 Successful evaluations: 26

100

11

Calphad Optimizer

Comprehensive results in real-time

Optimization progress • Chart: All evaluations \$ Add All evaluations 3.5 3.0 2.5 2.0 1.5 1.0 0.5 200 400 600 800 1,000 1,200 1,400 1,600 0 Evaluation ● Overall ● Hmix liquid ● Hmix bcc ● Hmix fcc ● Solidus fcc (Ni) ● Solidus bcc (Cr) ● Liquidus bcc (Cr) • Liquidus fcc (Ni) • Ni solubility in BCC (Cr) reversed • Cr solubility in FCC (Ni) • Activity 1873 K - Cr in liquid • Activity 1273 K - Cr in bcc //

The SQLite results database

Thermodynamic Software

Đ.

-

Thermodynamic Databases

GT

- What is SQLite?
 - A lightweight, file-based and relational database management system
- Benefits
 - Structure: well-defined schema organizes data into tables, rows, and columns
 - Tables: variables, errors, experiments results vs iteration

The SQLite results database

📄 db	B Browser for SQLite - C:\FactSage83\CalphadOptimizer\history\2024-05-27_09-01-29-optresults.db -						\times		
File Ed	it View Tools	Help							
₀New	Database	⊌Open Database 🖕 🧣	Write Changes Reve	ert Changes	n Project	Attach Database	×Close Database		
Datab	ase Structure	Browse Data Edit F	Pragmas Execute SQL						
Table:	variables	✓ São 36	•	🛚 🐴 🛍 🧏 Filte	er in any column				
	iteration	V1	V2	V3	V4	V5	V6	V7	^
	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter Fil	ter
1	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2	2.0	27885.3596915765	-94.9978489545166	-44994.1363261757	-55.3578523696819	47294.242832802	35.3398974842289	78435.9135409683 -8	2.612
3	3.0	-94692.8060632263	-60.232469862068	29976.8875559043	8.98829612055346	-55911.8755918601	17.8531367750032	61886.0913355647 -9	8.700
4	4.0	91442.6144413553	-32.6810909771478	-81450.8313239696	-80.6567246325006	69498.8732694913	20.7452062731708	61425.6546548754 4	5.946
5	5.0	65880.9328505983	23.7039504726122	72341.3800621547	15.4704290511977	40914.3672429843	-90.8351232679592	-54420.3448696901 -4	2.122
6	6.0	27136.8888528798	-27.0335642057128	-25963.8065766232	-58.0985938451215	-46604.4355901769	87.3309175416255	29607.0770493184 2	1.826
7	7.0	97904.670127318	27.9999519705386	11389.9487549291	36.9228501976057	68570.3840379612	55.199982308697	-54190.3856071786 -9	3.579
8	8.0	75273.525294533	-37.0644238399338	31087.7330589757	-20.8736197876584	82909.5179481079	-8.22962948243794	-47023.966700389 -5	0.674
9	9.0	-20119.8989719203	-56.135848167982	99507.521299021	1.90525873527385	-81818.1175652404	-90.5767249141473	-78070.1739298674 2	5.489
10	10.0	99224.2760480183	5.82286901976917	94215.6755227227	72.1559404461781	-97703.7956114351	44.1443638715975	36342.0738053146	7.394
11	11.0	-9255.25873415862	90.7631855033084	75170.5880756381	-47.3221898493086	117.22261005966	-64.269623893331	82525.5678689633 74	4.103 🗸
< >						>			
•	1 - 11 of 2940	iid d			Go to:	1			

UTF-8 ::

GT

- What is SQLite?
 - A lightweight, file-based and relational database management system
- Benefits
 - Structure: well-defined schema organizes data into tables, rows, and columns
 - Tables: variables, errors, experiments results vs iteration
 - Portability: self-contained, single file
 - Easy copying and sharing

GT

- What is SQLite?
 - A lightweight, file-based and relational database management system
- Benefits
 - Structure: well-defined schema organizes data into tables, rows, and columns
 - Tables: variables, errors, experiments results vs iteration
 - Portability: self-contained, single file
 - Easy copying and sharing
 - Simplicity: minimal configuration setup
 - Python example:

engine = sqlalchemy.create_engine('sqlite:///2024-05-06_14-30-17-optresults.db')
var_df = pandas.read_sql_table('variables', engine)

Command line interface

Thermodynamic Software

-

Thermodynamic Databases

Command line interface Command Prompt

C:\FactSage83\CalphadOptimizer\lib>launcher.os C:\FactSage83\CalphadOptimizer\examples\Cr-Ni.opt Reading file: C:\FactSage83\CalphadOptimizer\examples\Cr-Ni.opt

Optimization saved as /history/Cr-Ni-start.opt

Optimized parameters:

Command Prompt

riable	ID	Value	Minimum	Maximum
V1	L(LIQUID;Cr,Ni;0)A	-12320.00	-100000	100000
V2	L(LIQUID;Cr,Ni;0)B	-1.12	-100	100
V3	L(LIQUID;Cr,Ni;1)A	5010.00	-100000	100000
V4	L(LIQUID;Cr,Ni;1)B	2.01	-100	100
V5	L(FCC_A1;Cr,Ni:Va;0)A	6500.00	-100000	100000
V6	L(FCC_A1;Cr,Ni:Va;0)B	-12.82	-100	100
V7	L(FCC_A1;Cr,Ni:Va;1)A	26140.00	-100000	100000
V8	L(FCC_A1;Cr,Ni:Va;1)B	-9.29	-100	100
V9	L(BCC_A2;Cr,Ni:Va;0)A	21570.00	-100000	100000
V10	L(BCC_A2;Cr,Ni:Va;0)B	-16.04	-100	100
V11	L(BCC_A2;Cr,Ni:Va;1)A	24370.00	-100000	100000
V12	L(BCC_A2;Cr,Ni:Va;1)B	-4.92	-100	100

C:\FactSage83\CalphadOptimizer\lib>

Command line interface python


```
6 # Define the paths
```

- 7 lib_directory = r"C:\FactSage83\CalphadOptimizer\lib"
- 8 history_directory = r"C:\FactSage83\CalphadOptimizer\history"
- 9 file_name = "Cr-Ni"
- 10 opt_file = rf"C:\FactSage83\CalphadOptimizer\examples\{file_name}.opt"

```
11 co_executable = "launcher.os"
```

```
12
```

13 # Change the current working directory

```
14 os.chdir(lib_directory)
```

```
15
```

```
16 # Execute the optimization with CLI
```

```
17 subprocess.run(f'"{co_executable}" "{opt_file}"', check=True, shell=True)
```

18

19 # Change the current working directory

```
20 os.chdir(history_directory)
```

```
21
```

- 22 # Load SQLite results
- 23 engine = sqlalchemy.create_engine(f"sqlite:///{file_name}-optresults.db")
- 24 var_df = pd.read_sql_table("variables", engine)

1st Analysis: Optimization performance

Thermodynamic Software

Đ.

-

Thermodynamic Databases

1st Analysis: Optimization performance Error vs evaluation

```
2 # Load SQLite results
   engine = sqlalchemy.create_engine(f"sqlite:///{file_name}-optresults.db")
 3
   df = pd.read sql table("errors", engine)
 4
 5
   # Plotting
 6
 7 • def plot_dispersion(df):
        y col = df.columns[0]
 8
       x_cols = df.columns[1:]
 9
10
        plt.figure(figsize=(10, 6))
11
12
        for col in x cols:
13 -
            plt.scatter(df[y_col], df[col], label=name_mapping.get(col, col))
14
15
        plt.xlabel('Evaluation')
16
        plt.ylabel('Error')
17
18
        plt.ylim(bottom=0, top=3.5)
        plt.title(f'Optimization progress: All evaluations')
19
        plt.legend(loc='upper center', bbox to anchor=(1.17, 0.8), ncol=1)
20
        plt.show()
21
22
    plot_dispersion(df)
23
```

1st Analysis: Optimization performance Error vs evaluation

1st Analysis: Optimization performance Parameter convergence

1st Analysis: Optimization performance Parameter convergence – only improvements

1st Analysis: Optimization performance Parameter convergence – only improvements

1st Analysis: Optimization performance Error distribution for Ni solubility in BCC

1st Analysis: Optimization performance Error distribution per experiment

1st Analysis: Optimization performance3D shape of the error function

2nd Analysis: Exploratory data analysis

Thermodynamic Software

Đ.

-

Thermodynamic Databases

Cr-Ni experimental data	Sample Size
Activity of Cr in BCC_A2	20
Activity of Cr in liquid	53
Heat of mixing of liquid	62
Heat of mixing of BCC_A2	11
Heat of mixing of FCC_A1	15
Solidus (FCC_A1)	14
Solidus (BCC_A2)	10
Liquidus (FCC_A1	13
Liquidus (BCC_A2)	16
Solvus (BCC_A2)	23
Solvus (FCC_A1)	31
Total	268

Time/iteration = **1.2 s**

Cr-Ni experimental data	Sample
	Size
Activity of Cr in BCC_A2	20
Activity of Cr in liquid	53
Heat of mixing of liquid	62
Heat of mixing of BCC_A2	11
Heat of mixing of FCC_A1	15
Solidus (FCC_A1)	14
Solidus (BCC_A2)	10
Liquidus (FCC_A1	13
Liquidus (BCC_A2)	16
Solvus (BCC_A2)	23
Solvus (FCC_A1)	31
Total	268

Time/iteration = **1.2 s**

EDA:

- Data Collection
- Data Cleaning
- Statistical Analysis
- Grouping
- Thresholding

GT

Cr-Ni experimental data	Sample Size
Activity of Cr in BCC_A2	20
Activity of Cr in liquid	53
Heat of mixing of liquid	62
Heat of mixing of BCC_A2	11
Heat of mixing of FCC_A1	15
Solidus (FCC_A1)	14
Solidus (BCC_A2)	10
Liquidus (FCC_A1	13
Liquidus (BCC_A2)	16
Solvus (BCC_A2)	23
Solvus (FCC_A1)	31
Total	268

Time/iteration = **1.2 s**

EDA:

- Data Collection
- Data Cleaning
- Statistical Analysis
- Grouping
- Thresholding

Cr-Ni experimental data	Sample
Activity of Cr in BCC_A2	0
Activity of Cr in liquid	0
Heat of mixing of liquid	39
Heat of mixing of BCC_A2	3
Heat of mixing of FCC_A1	5
Solidus (FCC_A1)	7
Solidus (BCC_A2)	4
Liquidus (FCC_A1	6
Liquidus (BCC_A2)	6
Solvus (BCC_A2)	14
Solvus (FCC_A1)	15
Total	99

3rd Analysis: Machine learning

Thermodynamic Software

Đ.

-

Thermodynamic Databases

3rd Analysis: Machine learning


```
6 # read SQLite results
```

7 engine = sqlalchemy.create_engine(f"sqlite:///Cr-Ni-optresults.db")

```
8 y_df = pd.read_sql_query("SELECT error FROM errors", engine)
```

```
9 x_df = pd.read_sql_query("SELECT * FROM variables", engine)
```

10

```
11 # create neural network
```

```
12 model = Sequential()
```

```
13 model.add(Input(shape=(len(x_df.columns),), dtype='float32'))
```

```
14 normalization = Normalization(name="normalization")
```

```
15 normalization.adapt(x)
```

```
16 model.add(normalization)
```

```
17 nodes = 512
```

```
18 for _ in range(4)
```

```
19 model.add(Dense(nodes, activation='relu'))
```

```
20 model.add(Dense(nodes, activation='linear'))
```

```
21 model.add(Dense(1, activation='linear'))
```

```
22
```

```
23 # compile
```

24 model.compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mean_squared_error")

25

- 26 # fit
- 27 model.fit(x_df, y_df, epochs=300)

3rd Analysis: Machine learning Fit of the error function using a deterministic neural network

Conclusion

- Calphad Optimizer
 - User-friendly GUI
 - Real-time responsiveness
 - Robust optimization algorithms
 - FAIR-compliant
 - Interoperable
 - Reusable
 - CLI-compatible
 - SQLite post-processing analysis
 - Optimization performance
 - Exploratory data analysis
 - Machine learning
 - And much more!

Stay tuned for our publication on demonstrating the performance of Calphad Optimizer in details!

Thank You!

Bruno Reis br@gtt-technologies.de

Thermodynamic Software

27

Ū.

-

Thermodynamic Databases