PLASHPHOS

The complete thermochemical recycling of sewage sludge

FlashPhos

The complete thermochemical recycling of sewage sludge

S. Arnout, A.Kotze, E. Nagels, Y. Cryns, D. Messina

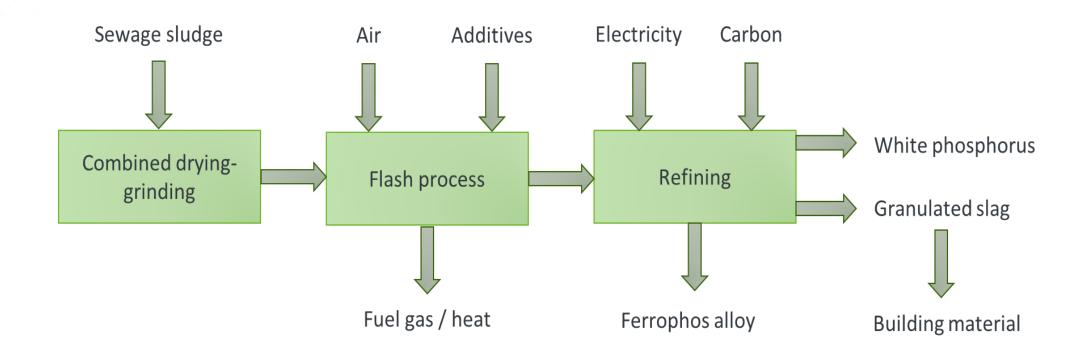
InsPyro

20-21/06/2023

MISSION: INSPIRING METALLURGY

InsPyro improves existing metallurgical processes and develops new **sustainable processes** together with its customers

Why?


Elemental phosphorus (P4) is 100% imported in Europe It is a critical raw material

Sewage sludge is a rich source of phosphorus

Legislation changes are changing the market

lashPhos consortium

- Coordinator: Uni Stuttgart
- Consortium: Covering process engineering and technology, building materials, commercialization, environmental impact
- InsPyro's role:
 - Thermodynamic modelling, mass and energy balances, virtual plant (digital twin)
 - Lab scale experiments on thermal and reduction behaviour of sewage sludge

∨dz.

- Operational temperature
- Atmosphere conditions
- Fluxing strategies
- Energy requirements
- Distribution of elements over different phases

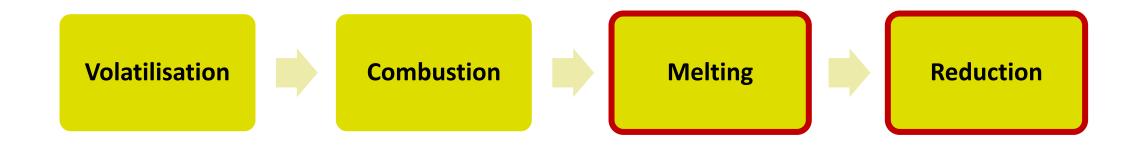
Tools

Gas outlet

Heating compartment

Control panel

Balance



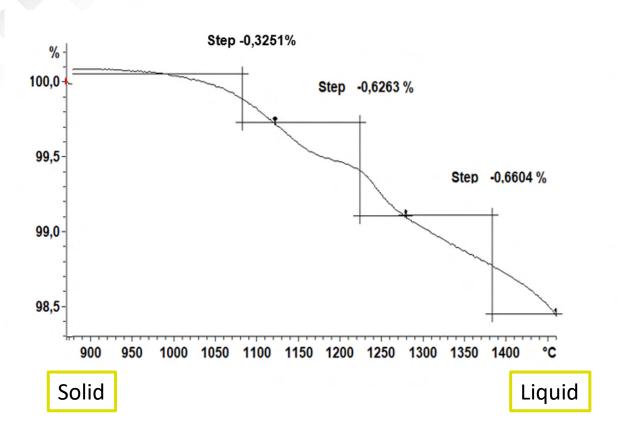
Process Steps

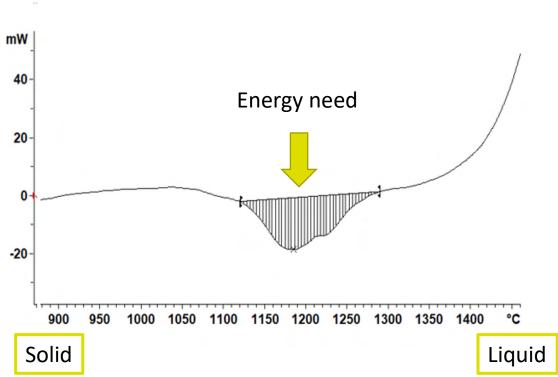

Melting behaviour of the ash

Ash composition

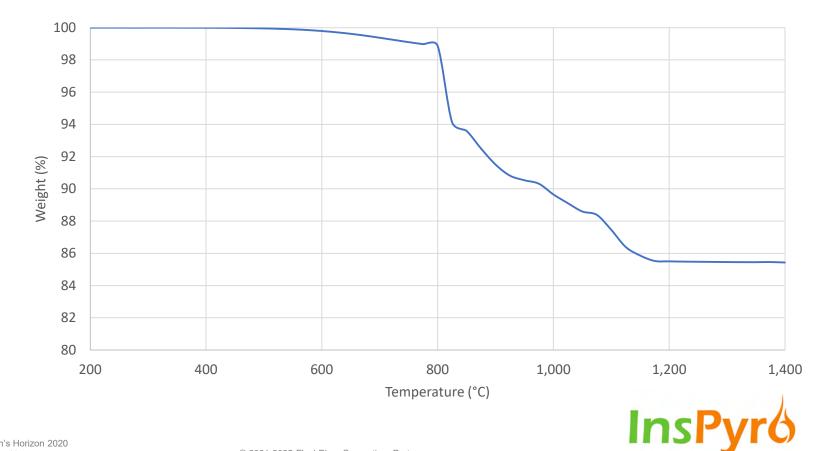
Component	Weight (%)
CaO	11
SiO ₂	21
Al ₂ O ₃	23
Fe ₂ O ₃	24
SO ₃	3
MgO	2
K ₂ O	2
P_2O_5	10
Minor compounds	2
Total	100

Calculated melting behavior of ash





Measured ash melting behaviour


Reduction of ash

Ash composition

Component	Weight (%)
CaO	11
SiO ₂	21
Al ₂ O ₃	23
Fe ₂ O ₃	24
SO_3	3
MgO	2
K_2O	2
P_2O_5	10
Minor compounds	2
Total	100

Calculated weight evolution

Measured ash reduction behaviour

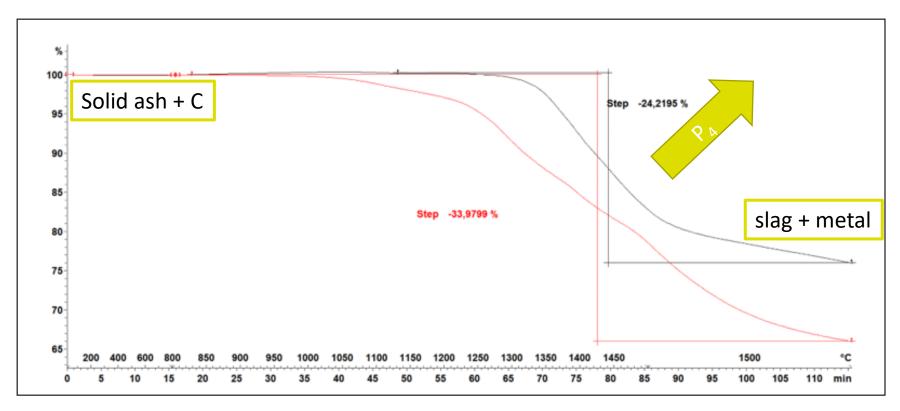
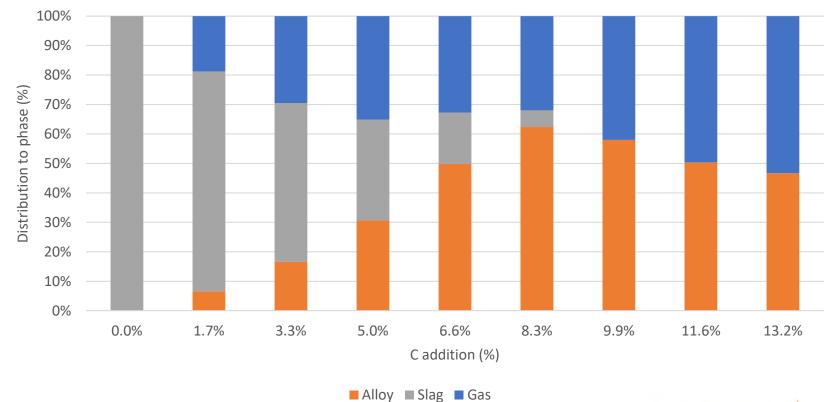


Figure 11: Carbon size comparison between fine (red) and coarser (black) carbon particles.


Phase distribution upon reduction

Ash composition

Component	Weight (%)
CaO	11
SiO ₂	21
Al ₂ O ₃	23
Fe ₂ O ₃	24
SO ₃	3
MgO	2
K ₂ O	2
P_2O_5	10
Minor compounds	2
Total	100

Calculated P distribution over different phases

Phase composition

Table 3: Calculated slag and alloy compositions at 1500 °C and 11.6% carbon.

Ash composition

Component	Weight (%)
CaO	11
SiO ₂	21
Al ₂ O ₃	23
Fe ₂ O ₃	24
SO ₃	3
MgO	2
K ₂ O	2
P_2O_5	10
Minor compounds	2
Total	100

+ Operational conditions

Material	Component	Weight (%)
	Fe	64.6
	P	16.7
	Si	12.0
Alloy	С	3.4
	Mn	1.2
	<u>Ti</u>	1.2
	Minor	0.9
	Total	100.0
Slag	CaO	25.6
	SiO2	39.9
	A 1202	26.2
	Al2O3	26.2
	MgO	5.0
	MgO	5.0

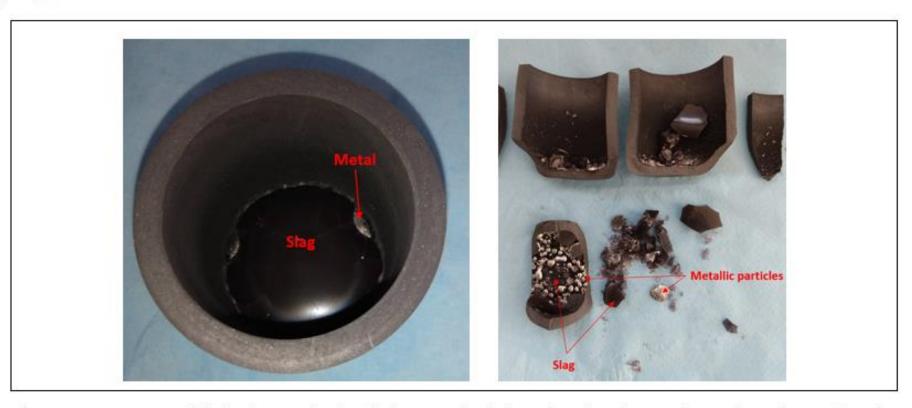


Figure 13: Crucible before and after being crushed showing the slag and metal portions after the experiment in the tube furnace.

Slag comparison between SEM-EDX (1400 °C, B-0.8) and FactSage (1400 °C, B-0.6).

Metal comparison in between SEM-EDX and FactSage at 1600 °C, B-0.6.

Element	SEM-EDX (w%)	FactSage (w%)
P	16.6	14.5
Fe	79.7	67.3
Si	3.6	14.5
<u>wC</u>	Not <u>analyzed</u>	1.5
Mn	Not <u>analyzed</u>	1.1
<u>Ti</u>	Not <u>analyzed</u>	0.9
Other	Not <u>analyzed</u>	0.9

Component	SEM-EDX (w%)	FactSage (w%)
CaO	25.5	19.9
SiO ₂	37.0	38.3
Al ₂ O ₃	17.9	33.1
P_2O_5	9.8	0.1
Fe ₂ O ₃	4.7	0.2
MgO	9.8	3.1
K ₂ O	4.7	4.3
TiO ₂	3.3	0.7
MnO	-	0.4

LASHPHOS

The complete thermochemical recycling of sewage sludge

- Andrea Kotze
 InsPyro
- andrea.kotze@inspyro.be
- Ambachtenlaan 54, 3001 Leuven, Belgium

- www.flashphos-project.eu
- EU Project FlashPhos

@FlashPhos

Thank you for your attention!

© 2021-2025 FlashPhos Consortium Partners. All rights reserved. FlashPhos is a HORIZON 2020 project supported by the European Commission under grant agreement No 958267. All information in this presentation may not be copied or duplicated in whole or part by any means without express prior agreement in writing by the FlashPhos partners. All contents are reserved by default and may not be disclosed to third parties without the written consent of the FlashPhos partners, except as mandated by the Grant Agreement with the European Commission, for reviewing and dissemination purposes. All trademarks and other rights on third party products mentioned in this document are acknowledged and owned by the respective holders. The FlashPhos consortium does not guarantee that any information contained herein is error-free, or up-to-date, nor makes warranties, express, implied, or statutory, by publishing this document. This document reflects only the author's view and the European Health and Digital Executive Agency (HaDEA) and the European Commission are not responsible for any use that may be made of the information it contains. For more information on the project, its partners and contributors, please see the FlashPhos website (www.flashphos-project.eu).