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What is SysCAD?

• Powerful & versatile Process Plant simulator

• Steady State or Dynamic mode 

• Simulate simple to complex full plant 
operation

• An invaluable process design tool that will 
help users gain tremendous insights into their 
process operation

• Good process knowledge aids better decision 
making

• Improved plant operation performance

• Cost saving

• More efficient and knowledgeable operators



Thermodynamic Calculation Engines (TCE)

AQSol

OLI

PHREEQC

ChemAppGTT-Technologies

with FactSage

TCE
Thermodynamic 

Calculation 
Engines

CRCT - ThermFact
Centre for Research in Computational Thermochemistry

• Detailed 
thermodynamics 
applied as needed

• One SysCAD model, 
multiple TCEs and 
chemistry models

• Parallel processing

• User-friendly features

KWA Kenwalt Australia



Batch Cu Converting

Process Description
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Process Description
• Cu converting is traditionally carried out in Peirce-Smith converters.

• It is a batch process receiving furnace matte. Mainly consisting of 
two distinctive steps
• Slag blows → removal of Fe to slag to produce white metal (“Cu2S”)

• Depending on initial matte grade

• Could consist of 2 or 3 slag blows, each receiving fresh furnace matte and skimming slag at the 
end of the blow

• Fe end-point might be higher for initial blows 

• Cu blow → removal of S from Cu to produce Blister Cu
• Longer blow, needs cold charge (high grade reverts) for temperature control

• Transition through Cu-S miscibility gap

• In a converter aisle, several 2-4 converters typically operate in staggered 
sequence, with one in Cu blow (high and continuous SO2 stream) whereas other 
converters are in slag blow, or down for rebrick.
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Thermodynamic System

Cu-Fe-S-O-Si+ System, Definition of 
thermodynamic ChemSage input file
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ChemSage Input File

A thermodynamic input file consisting of:
• 7 System components (plus electron):

• Cu-Fe-S-O-N-H-Si-e

• 9 Solutions:
• gas_ideal, Spinel, Monoxide, Liq(Matte_Metal)#1#2, fcc#1#2, 

Slag#1#2, etc.

• 39 Pure Components:
• Fe2O3, CuO, Cu2O, CuFeO2, S, FeS, FeS2, CuS, Cu2S, CuFeS2, 

H2O(l), SiO2, Fe2SiO4, etc.

• Built from published thermodynamic parameters[1-9]
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Main Solutions
Liquid Metal/Matte

SUBG model

Cu, Cu2+, Fe, Fe2+, S and O

Matte/Metal liquidus surface

Slag liquidus surface (FeO-Fe2O3-SiO2)

Slag
SUBG model

SiO2-FeO-Fe2O3-Cu2O
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SysCAD Implementation

Dynamic Converter Model
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Species Mapping

ChemApp species are mapped to 
SysCAD species

Mapping process is automated but 
also allows user customization

Species/Phase suppression is 
supported
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Dynamic Model 
Structure
The model centers around a generic 
“ChemApp Tank” unit model

A converter class was build to simulate 
the batch process

Status: Idle, loading, Slag blow, 
Skimming, Cu Blow, Casting and 
Maintenance
Each status has a defined behaviour 
and set point

A “slag blow” subclass was defined to 
allow creating multiple slag blows, each 
with its own settings and configuration 

Code is generic allowing use for multiple 
converters in a flowsheet
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Main Class 
Settings

General settings for the overall 
converting process are defined by 
a custom interface

The user input interface is created 
with each “converter” instance

General Parameters:

• Ladle size (capacity)

• Loading flow rate

• Furnace and converter T (iso-
thermal mode)

• Information variables: Fe/SiO2, 
%Fe, %S, State, etc.
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Slag Blow Class 
Settings

The Slag Blow subclass allows to 
define specific process 
conditions for each slag blow

• Number of ladles per blow

• Blast flow rate

• Enrichment

• Silica to O2 ratio

• Fe end point
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Process Logic

Loading

MMatte

> t matte/ladle 
* slagblow(i).#  
ladles added

If “Idle”
Starts new 

cycle
i=0

Slag Blowing

%FeMatte < 
slagblow(i).Feend

-point?

Set matte flow = 0
%O2 = slagblow(i).enrichment
Blast flow = slagblow(i).Blastflow
Flux flow = slagblow(i).fluxflow

Slag skimming

Mslag < Min?

Y

N

Y

N

Y

N

i += 1
Flowslag = 0

i > # of slag 
blows

Cu blowing

%SMatte < Send-

point

Y

N

Y

N

Casting

Mmetal < Min?

Y

N

Idle

Idle
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Results

Isothermal Case – Dynamic Model
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Slag
blow#1

Loading

Slag
blow#2

Slag
blow#3

skimming

Cu Blow

Cu-S miscibility gap

Results
Selected Trends vs time:

Liquid #1(matte): red

Liquid #2 (blister): blue

S wt% in liquid #1: yellow

S wt% in liquid #2: orange
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Summary

• A Batch Cu Converter model was implemented in SysCAD

• The model uses SysCAD dynamic solver

• ChemApp TCE was used to simulate the converter
• The model centers on a generic ChemApp Tank unit model

• A thermodynamic input file including matte, metal, slag, spinel and 
other phases was prepared in-house for this model

• A flexible and modular approach using a converter class 
definition was chosen to allow future expansion of the model
• A sub-class for slag blows was also implemented
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Next Steps
• Enthalpy target run (Heat balance and cold charge)

• Automate addition of reverts and cold charge

• Update tank discharge function (for individual phases)

• Oxygen efficiency

• Use Constrained Free Energy to limit oxygen extent of equilibrium, particularly as a function 
of S concentration during late stages of Cu blow

• Multiple converters in parallel

• Simulate converter aisle dynamics

• Upstream/downstream units

• Add constraints originated from furnace, oxygen plant, off-gas handling system, acid plant, 
etc.

• Expand/Enhance thermodynamic system 

• Add additional impurities, expanding system of applicability
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Thank you!

Questions?

Please Contact:

 tanai.marin@syscad.net

 kevin.heppner@syscad.net

 info@syscad.net

More Information:
 syscad.net

 help.syscad.net
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