GTT User meeting – 2022

Application of private database development feature in FactSage for modeling the liquid steel solution

Supratim Sengupta, Deepoo Kumar

Department of Metallurgical Engineering and Materials Science

Indian Institute of Technology Bombay

Contents

- Introduction
- Issue of calcium solubility
- Development of a private database in FactSage
- Comparison with FTmisc (Fe-Ca-Al-Mg-O system)
- Predicted calcium pick-up: steel-slag reaction
- Conclusions

Introduction

- Steelmaking process: BF-BOF/EAF → Ladle/RH/VD → continuous casting
- Secondary steelmaking: composition adjustment, clean steel
- Modeling work:
 - Earlier focus: mixing in ladle, composition change of steel and slag
 - Recent focus: comprehensive model to determine changes in steel, slag and inclusion during secondary steelmaking; <u>FactSage is popular here</u>

Ref.: Van Ende & Jung, MMTB, 48 (2017), page. 28-36

Inclusion prediction models

- Reaction between Al-killed steel and CaO, MgO saturated slag
- FactSage based kinetic model tends to predict higher CaO content in inclusions
- FT-misc without Ca*O associate shows better agreement with exp. for 0.1% Al
 - But it does not explain Ca pick-up in inclusions for other cases

Steel (0.1% Al) with CAM slag in MgO crucible

Model: FTmisc with associate

Steel (0.1% Al) with CAM slag in MgO crucible

Model: FTmisc without associate

Conditions for calcium pick-up

- Combinations of slag composition, crucible material were tested
- Conditions for significant calcium pick-up in inclusions (without calcium treatment):
 - 2% Al containing steel in contact with double saturated slag
 - Addition of 1% electronic grade silicon in Al-killed steel in contact with double saturated slag
- Ignoring Ca*O associate does not help here!

Current approach

- Create an associate solution for liquid Fe using solution module in FactSage (private database)
- The free energy of associate formation for Al*O, Al*O*Al and Mg*O are found to match FTmisc
- Adjust free energy of formation for Ca*O that can explain experimental observations

Fe-Al-O and Fe-Mg-O: FTmisc vs Private

 The agreement between FTmisc and the private database is good for Fe-Al-O and Fe-Mg-O system

Calcium solubility: FTmisc vs private database

- Private database considers limited Ca*O associate formation
- $a_{CaO} = 1$

 500 g of steel containing variable amount of Al is equilibrated with 75 g of slag (51% CaO, 39% Al₂O₃ and 10% MgO)

Kinetic model

- Calcium solubility is too low; difficult to measure
- Measuring inclusion composition is relatively easier
- Effective equilibrium reaction zone model
- Reactions/phenomena:
 - Steel-slag reaction
 - Steel-inclusion reaction
 - Inclusion flotation
- Inclusion transformation is a two-step process:
 - Reduction of CaO and MgO at the steel-slag interface

$$3(CaO)_{slag} + 2[Al] = 3[Ca] + (Al_2O_3)_{slag}$$
$$3(MgO)_{slag} + 2[Al] = 3[Mg] + (Al_2O_3)_{slag}$$

Reduction of Al₂O₃ at the steel-inclusion interface

2. $Al_2O_3 \rightarrow Al-Ca-Mg-O$

Calcium pick-up: 0.1 wt% Al

- Dissolved calcium is about 50-times less for private database
- Decrease in total calcium is due to inclusion flotation
- Predicted inclusion composition from private database is closer to experimental observation

Calcium pick-up: 2 wt% Al with slag

- Private database significantly reduces calcium pick-up by the melt
- Kinetics of Ca and Mg pick-up is much faster

Conclusion

- An associate solution model developed in FactSage is an excellent tool to test experimental data
- Kinetic changes in inclusions during steelmaking may be used to test and understand the behavior of liquid steel solution
- More experimental data are required to resolve Fe-Ca-Al-Mg-Si-O system; silicon is to be incorporated

Acknowledgment

- Prof. In-Ho Jung, SNU, South Korea
- Industrial Research and Consultancy Centre, IIT Bombay
- Centre of Excellence in Steel Technology, IIT Bombay
- Department of Metallurgical Engineering and Materials Science

Thank you ©

Contact: deepook@iitb.ac.in