

Looking for future solutions by digging into the past:

How computational thermochemistry helps us solve old industrial mysteries

<u>Sabrine Khadhraoui ¹</u>, Klaus Hack ², Tatjana Jantzen ²

¹ SMS group GmbH, Germany

² GTT Technologies, Germany

GTT Users' Meeting (Online), 29.06.2022

1. The past, present and future situation for phosphorus (1)

- Phosphorus is a harmful element for steel
 - reduces ist ductility and thoughness
 - must be removed from the liquid iron by oxidation, up to a value of [0.007-0.01] wt%
- > Past: back in the 1960s and 1970s, German (and also French) steelworks used local iron ores
 - were caracterized by a high P-content in the range 1-1.6%
 - target P in steel can only be achieved with a double slag strategy: 2 step refining with an intermediate deslagging
- > Present: In Germany, the iron ores used for producing steel are imported, mainly from Brasil
 - which were caracterised by a low P-content 0.07-0.1 wt%
 - considered low compared to other regions, such as Japanese and Indian steel works, where the initial [%P] content of the ores is in the range of 0.15 wt%

1. The past, present and future situation for phosphorus (2)

- Future: An increasing trend for (initial) P-content in hot metal
 - due to tendency to mine low-grade iron ores (high P-content) instead of high-grade (low P) iron ores.
 - an increase in initial P in hot metal up to 0.15-0.25 wt% may be possible in the future.
 - will European steelworks have to adapt the double slag practice similar to Japanese and Indien steelworks?
 - "Green steel": A transition from C-based to an H₂-based reduction processes will not improve the situation with respect to P-removal
 - $\circ~$ may drive the tendency to use low-grade iron ores further
 - The double slag practice (in its current version) can no longer be implemented in such a case
 - The high P removal rates are achieved by setting a low process temperature: 1250°C-1450°C .
 - The temperature of hot metal produced from C-based reduction is in the range 1200-1350 °C
 - However, hot metal from a C-free reduction must be processed at T>1536°C

We need to develop new solutions for an effective P removal in the future

2. Computational thermochemistry

- Development of a thermodynamic database
 - based on the CALPHAD-approach
 - using the thermodynamic computing software FactSageTM
- ➢ Why CALPHAD ?
 - due to its capability of extrapolating from:
 - known systems: for which experimental data are available (past)
 - to model the thermochemical behavior of new systems, for which complete sets of data are missing (present + future)
- > We can use this approach to evaluate and reflect back on past industrial practices
 - there is a (relatively) large amount of experimental and industrial data for high phosphorus slags .
 - May be we can gain valuable information to improve the present and future practices?

Phases	Gibbs energy model
Liquid oxide	non-ideal associate solution model
Solid solutions	Compound Energy Formalism
Stoichiometric compounds	a temperature dependent equation

3. Results: Re-examining the system: CaO-FeO_x-P₂O₅(1)

- Calculated system's boundaries at reduced p(O₂) (in equilibrium with liquid Fe) and 1873 K (1600°C)
- a large number of experimental data, describing the lime saturation line available → considered as the "target region" in the industrial process.
- \rightarrow the agreement between calculated lime saturation line and the experimental data is very good.

SMS (i) group

3. Results: Re-examining the system: CaO-FeO_x-P₂O₅ (2)

- \succ Calculated system's boundaries at elevated p(O₂) and 1873 K (1600°C)
 - an increase in the Fe₂O₃/FeO ratio is found to have a tremendous effect on the system !
 - ↑ CaO-saturation of the slag by about 3-8 wt%
 - expansion of the liquid slag region
 - \rightarrow more flexibility in achieving a fully liquid slag.

The importance of using CALPHAD-based approaches: New information about the behavior of (well-established) ternary systems gained.

> 0.5 0.9 0.8 0.7 0.6 0.4 0.3 0.2 0.1 FeO mass fraction S. Khadhraoui, K. Hack, T. Jantzen, H.-J. Odenthal: Study of the State of Industrial P₂O₅-Containing Slags Relevant to Steelmaking slags (...), Steel research international (2019) 1900085.

3. Re-examining an industrial mystery with respect to P-equilibrium (1)

- In a series of <u>independent plant trials</u>:
 - inexplicably low [%P] ~ 0.007 wt% were measured in metallic droplets (granules embedded in slag samples)
 - the samples had a low (%FeO)_x content ~ 10 wt%.
- Why were those observations considered controversial:
 - 1. the fundamentals of deP: a high [O] metal is a necessary condition:
 - [P] _{metal} + 5/2 [O] _{metal} + 3/2 (O²⁻) _{slag}↔ (PO₄³⁻) _{slag}

[O] _{metal} = f((%FeO), Temperature)

- laboratory P-equilibrium studies reported that the minimum of [%P] equilibrium ~ 0.02 wt%!
- Let us re-investigate this <u>old</u> case using our <u>new</u> thermodynamic database!

3. Re-examining an industrial mystery with respect to P-equilibrium (2)

- 1. Why was P-oxidation possible at low FeO_x ?
- The studies reported that the samples contained 7-10 wt% SiO₂
- Consider the quaternary phase diagram at 10 % SiO₂
 - the samples were saturated with C2S_C3P (2CaO.SiO₂_3.CaO.P₂O₅)
 - the liquid slag part has a high FeO_x > 50% independently of the total FeO_x-content of the "heterogeneous" slag!
 - → high [O]_i established between metal droplets and the liquid slag part !
 - \rightarrow progress of the P-oxidation reaction
- 2. How can [P] < [%P] equilibrium?
 - The laboratory studies were carried out in fully liquid slags (zone 1 in ternary system)
 - \rightarrow Transferribility of those studies for describing the equilibrium state in C2S_C3P saturated slags?
 - Our calculations indicated that this solid phase has a great potential for removing phosphorus:
 - \rightarrow C2S_C3P sat. shifts the [%P]-equilibrium to much lower values (as low was 0.004 wt%).
 - \rightarrow this industrial "mystery" can be considered as an evidence for the P-removal potential of this phase

SMS **(e)** group

4. Conclusion

- Computational Thermochemistry helps us learn from the past in a way that:
- we use old experimental data in the development and optimization of thermodynamic databases
- it provides a reliable method for extrapolating from those optimized systems to new systems relevant for the present and the future situation
- \rightarrow significant reduction of the experimental and industrial effort.
- we can be use it to re-evaluate and reflect back on previous industrial practices, explain past controversies and learn something for the future.