EXPERIMENTAL STUDY AND THERMODYNAMIC ASSESSMENT OF THERMODYNAMIC PROPERTIES OF LI⁺, Na⁺, K⁺//CI⁻, CO₃²⁻ SYSTEM FOR THERMAL ENERGY STORAGE

GTT USERS' MEETING 2022

30.06.2022 | JIA QI

Institute of Energy and Climate Research, IEK-2 Forschungszentrum Jülich GmbH

Jia Qi, D. Sergeev, E. Yazhenskikh, M. Ziegner, G. Wu, M. Müller

OUTLINE

- Introduction
- Modelling Method
- Results and Discussion
- Conclusion and Outlook

INTRODUCTION

Li⁺, Na⁺, K⁺// Cl⁻, CO₃²⁻ system

Application

- Phase Change Material (PCM) for Concentrating Solar Power (CSP)
- Salt bath treatment (as coolant)
- Electrochemical deposition of carbon materials
- Molten carbonate fuel cell
- Molten salts oxidations of wastes

Modelling method

Pure substances: gas, liquid, solid (s1,s2,s3...)

GactSage™

CALPHAD

In the binary, ternary... system:

- pure substance phase
- Solution phase
 - liquid solution -
 - solid solution
- Intermediate compound

✓ Liquid: modified associate species model using Redlich-Kister-Muggianu equation $G_{m} = \sum x_{i}G_{i}^{0} + RT \sum x_{i} lnx_{i} + \sum \sum_{i < j} x_{i}x_{j} \sum_{v=0} L_{ij}^{(v)} (x_{i} *)_{j}^{v} ... +$ ✓ Solid solutions: sublattice approach (CEF) $G_{m} = \sum_{l_{0}} P_{l_{0}}^{(v)} Y_{0}^{0} G_{l_{0}} + \sum_{s=1}^{n} a_{s} RT \sum_{i=1}^{n_{s}} y_{i} Y_{i}^{(v)} (y_{i})^{s} (+ \sum_{l_{1}} P_{l_{1}} Y_{i} (L_{l_{1}}) + \sum_{l_{2}} P_{l_{2}} Y_{i} L_{l_{2}} +$

Solid-solid phase transition

Literature data

Reaction type	Т _{tr} , °С(К)	method	Reference	
solid↔solid	410 (683)	DTA	[Reisman, 1958]	
	407-420 (680- 693)	DTA	[Klement and Cohen, 1975]	
	415 (688)	DTA	[Otsubo and Yamaguchi, 1961]	
	410 (683)	database	SGPS , FTsalt	
	416 (689)	DTA	This work	
		(Impurities)		
	Not detected	Drop	[Janz et al., 1963]	
		calorimetry	[Rolin and Recapet, 1964]	

Solid-solid phase transition

Literature data

Reaction type	T _{tr} , °C(K)	method	Reference	
solid↔solid	410 (683)	DTA	[Reisman, 1958]	
	407-420 (680- 693)	DTA	[Klement and Cohen, 1975]	
	415 (688)	DTA	[Otsubo and Yamaguchi, 1961]	
	410 (683)	database	SGPS , FTsalt	
	416 (689)	DTA	This work	
		(Impurities)		
	Not detected	Drop	[Janz et al., 1963]	
		calorimetry	[Rolin and Recapet, 1964]	

DTA (open crucible, Ar)

- > The peak is caused by impurity of LiOH.
- > Eutectic temperature of LiOH-Li₂CO₃ -----419 °C [1].

[1] R. Cohen-Adad et al., Bulletin de la Societe Chimique de France. 1961:356-359.

HTXRD

Eutectic temperature of LiOH-Li₂CO₃ -----419 °C ^[1].

[1] R. Cohen-Adad et al., Bulletin de la Societe Chimique de France. 1961:356-359.

Vaporisation of LiOH

700

TG

LiCl KCl NaCl Na₂CO₃ K₂CO₃

DTA

HTXRD

TG

Eutectic temperature of LiOH-Li₂CO₃ -----419 °C ^[1].

[1] R. Cohen-Adad et al., Bulletin de la Societe Chimique de France. 1961:356-359.

Vaporisation of LiOH

Page 7

Slight phase transitions at 330 °C and 350 °C were noticed, but their thermal effect is too small to be detected.

Slight phase transitions at 330 °C and 350 °C were noticed, but their thermal effect is too small to be detected.

From equation based on enthalpy [Janz,1963], which can be not accurate.

LiC

Na₂CO₃

NaC

KCI

Li₂CO₃

K₂CO₃

Slight phase transitions at 330 °C and 350 °C were noticed, but their thermal effect is too small to be detected.

From equation based on enthalpy [Janz,1963], which can be not accurate.

C_p measurement-DSC devices

Instrument	DSC 404C_low_T	DSC 404C_high_T	mHTC 96
Company	Netzsch	Netzsch	Setaram
Temperature range	-180 - 650 °C	25 - 1600 °C	25 - 1400 °C
Heating rate	20 K/min	20 K/min	4 K/min
Crucible	Pt with Al ₂ O ₃ liner	Pt with Al ₂ O ₃ liner	Pt with Al ₂ O ₃ liner
Atmosphere	He, 10 mL/min	He, 10 mL/min	He, 10 mL/min

C_p measurement-DSC devices

Crucible selection

Pt : good thermal conductivity, but react with Li₂CO₃^[1] [1] R. Kasuya et al., Journal of the Ceramic Society of Japan. 2013;121(1418):884-890.

Instrument	DSC 404C_low_T	DSC 404C_high_T	mHTC 96
Company	Netzsch	Netzsch	Setaram
Temperature range	-180 - 650 °C	25 - 1600 °C	25 - 1400 ° C
Heating rate	20 K/min	20 K/min	4 K/min
Crucible	Pt with Al ₂ O ₃ liner	Pt with Al ₂ O ₃ liner	Pt with Al ₂ O ₃ liner
Atmosphere	He, 10 mL/min	He, 10 mL/min	He, 10 mL/min

Li₂CO₃

K₂CO₃

KCI

Na₂CO₃

NaC

C_p measurement-DSC devices

Instrument	DSC 404C_low_T	DSC 404C_high_T	mHTC 96
Company	Netzsch	Netzsch	Setaram
Temperature range	-180 - 650 °C	25 - 1600 °C	25 - 1400 °C
Heating rate	20 K/min	20 K/min	4 K/min
Crucible	Pt with Al ₂ O ₃ liner	Pt with Al ₂ O ₃ liner	Pt with Al ₂ O ₃ liner
Atmosphere	He, 10 mL/min	He, 10 mL/min	He, 10 mL/min

Crucible selection

Pt : good thermal conductivity, but react with Li₂CO₃^[1] [1] R. Kasuya et al., Journal of the Ceramic Society of Japan. 2013;121(1418):884-890.

AI_2O_3 : thermal conductivity not good

C_p measurement-DSC devices

Instrument	DSC 404C_low_T	DSC 404C_high_T	mHTC 96
Company	Netzsch	Netzsch	Setaram
Temperature range	-180 - 650 °C	25 - 1600 °C	25 - 1400 °C
Heating rate	20 K/min	20 K/min	4 K/min
Crucible	Pt with Al ₂ O ₃ liner	Pt with Al ₂ O ₃ liner	Pt with Al ₂ O ₃ liner
Atmosphere	He, 10 mL/min	He, 10 mL/min	He, 10 mL/min

Crucible selection

Pt : good thermal conductivity, but react with Li₂CO₃^[1] [1] R. Kasuya et al., Journal of the Ceramic Society of Japan. 2013;121(1418):884-890.

AI_2O_3 : thermal conductivity not good

 $Pt + Al_2O_3$ liner

C_p optimisation

Member of the Helmholtz Association

30/06/2022

Page 10

C_p optimisation

NaCI Na₂CO₃

LiC

GactSage[™]

999 K (726 °C)

exp. data, Kourkova 2007

eq. based on H, Janz_1963

800

approximation from exp. data, this work

exp. data, Brown 1936

 C_v c2c, ab initio

700

this work

600

T(K)

Li₂CO₃

K₂CO₃

900 1000 1100 1200

Member of the Helmholtz Association

Intermediate compound LiKCO₃

Intermediate compound LiKCO₃

C_p of LiKCO₃ literature data

Intermediate compound LiKCO₃

HTXRD of LiKCO₃

LiC

Na₂CO₃

NaC

^LKCI

Li₂CO₃

K₂CO₃

LiC

Na₂CO₃

NaC

KC

Li₂CO₃

 K_2CO_3

Page 14

Intermediate compound LiNaCO₃

C_p measurement

Intermediate compound LiNaCO₃

HTXRD

Table. Solid phase crystal structure and phase change temperature of $LiNaCO_3$ from different authors.

	M. Christmann	C. Ricca	This work
α phase	monoclinic	triclinic	triclinic
α phase $\rightarrow \beta$ phase	290 °C	175 °C	180-185 °C
β phase	hexagonal	hexagonal	hexagonal
β phase→γ phase	415 °C	360 °C	365-370 °C
γ phase	hexagonal	hexagonal	hexagonal

M. Christmann et al., Revue de Chimie Minerale, 15 (1978) 312-317. C. Ricca et al., Surface Science, 647 (2016) 66-77.

literature data

System Li₂CO₃-Na₂CO₃

LiC/ NaCl Na₂CO₃ KCl K₂CO₃

literature data

DTA measurement

Member of the Helmholtz Association

System Li₂CO₃-Na₂CO₃

HTXRD of Composition 0.975 Na_2CO_3 -0.025 Li_2CO_3

Composition	0.975 Na ₂ CO ₃ -0.025Li ₂ CO ₃		Pure Na ₂ CO ₃
Measurement	DTA	HTXRD	DTA
γ phase→β phase	335 °C	330 °C	348 °C
β phase $\rightarrow \alpha$ phase	456 °C	450 °C	477 °C

LiC

Na₂CO₃

NaC

KC

Li₂CO₃

K₂CO₃

Member of the Helmholtz Association

Na₂CO₃/(Li₂CO₃+Na₂CO₃) (mol/mol)

Na₂CO₃/(Li₂CO₃+Na₂CO₃) (mol/mol)

30/06/2022

Page 18

Na₂CO₃/(Li₂CO₃+Na₂CO₃) (mol/mol)

CONCLUSION AND OUTLOOK

- ✓ Pure Li_2CO_3 has no solid-solid transition at 419 °C
- ✓ Cp measurement for Li_2CO_3 from 300 450 °C
- ✓ Phase diagram of Na_2CO_3 -Li₂CO₃
- ✓ High temperature XRD for Li_2CO_3 -Na₂CO₃
- ✓ Phase diagram of Li_2CO_3 - K_2CI_2
- ✓ Phase diagram of K_2CO_3 -Li₂Cl₂
- □ Enthalpy increment of eutectic point of Li₂CO₃-K₂Cl₂
- ✓ Phase diagram of Li_2CO_3 -Na₂Cl₂
- ✓ Phase diagram of Na₂CO₃-Li₂Cl₂
- □ Enthalpy increment of eutectic point of Li₂CO₃-Na₂Cl₂
- Optimization of ternary system Li⁺, Na⁺, K⁺ // CO₃²⁻

ACKNOWLEDGEMENTS

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

In cooperation with:

Member of the Helmholtz Association

30/06/2022

Page 20