

Applying the driving force and extent of reaction as phase diagram axis

Pertti Koukkari

GTT Users' Meeting 2021

02/07/2021 VTT – beyond the obvious

Topics

Overview of the Constrained Free Energy minimisation method (CFE)

- Phase diagrams for constrained systems
 - Surface phases and paraequilibria
 - Driving force and reaction advancement as variables
 - Examples of diagrams with new axis

Overview of the CFE method

- Gibbs'ian methods well established for complex global equilibria and equilibrium phase diagrams. Necessary constraints for conventional min(G) are set for T, P and amounts of components (molecular mass balance)
- min(G) methods generally <u>do not</u> include <u>thermodynamic work</u> or <u>time-dependency</u>
- Constrained Gibbs free energy (CFE) minimisation deals with complex systems affected either by generalised work terms or reaction kinetics
- CFE is applied by using massless conditions as the necessary conservation constraints for various work terms and/or extent of chemical reaction (ξ). The massless conditions appear in the input matrix generally as virtual components and virtual phases (with zero mass).

$$dG = -SdT + VdP - \sum_{j}^{other} l_j dL_j + \sum_{k=1}^{N} \mu_k dn_k - Dd\xi$$

\Rightarrow CFE also allows for construction of non-conventional phase diagrams

Blomberg, P., Koukkari, P. A systematic method to create reaction constraints for stoichiometric matrices, Comp.Chem. Engng 35 (2011) 1238–123 Pajarre, R., Koukkari, P. & Kangas, P., 2016. Constrained and extended free energy minimization for modelling of processes and materials, Chem. Eng. Sci. 146, 244-258.

Published phase diagrams using constrained min(G)

VTT

Kang Y-B. 2015. Calphad 50, 23-31

The reactive ethanolacetic acid system:

 $\begin{array}{l} CH_3CH_2OH+CH_3COOH \rightarrow \\ CH_3CH_2COOCH_3+H_2O \end{array}$

Koukkari P, Pajarre R, Blomberg P. 2011. Pure Appl.Chem. 83(5), 1063-1074

Diffusionless paraequilibria (steels etc.)

Pelton A, Koukkari P, Pajarre R, Eriksson G

2014. J. Chem. Thermodynamics 72 16-22.

Lee J, Lee J-H, Tanaka T, Mori H, Penttilä K. 2005. JOM-J Min. Met. Mat. S. 57, 56-59.

Pajarre R, Koukkari P, Kangas P. 2016. CES_146, 244-258.

10

Conditions and variables for phase diagrams

Gibbs Free Energy:

$$dG = -SdT + VdP + \sum_{j=1}^{NC} \mu_j \, dN_j - Dd\xi$$

D = 0 at equilibrium

System of NC components:

- choose n potentials for the diagrams (n < NC+1), including T, P, μ_i
- form NC+1-n independent ratios of the non-corresponding <u>extensive variables (e.g. amounts of components)</u>
- out of these NC+1 variables may be used, two chosen as independent variables for XY-axis and the remainder must be held constant
 - \Rightarrow Non-equilibrium affinity ($D_r = A_r$) may appear as potential, $\xi_r = \text{EOR}^*$ as extensive variable (must be related to some other quantity)
 - \Rightarrow EOR is a given (input) amount of the virtual phase, affinity is received from the activity of the virtual component

Inclusion studies for continuous casting of steels

VTT

- raw steel is 'doped' with e.g. Calcium and Aluminium to improve machinability and grain refining in the product, Sulphur for e.g. increased strength
- non-metallic impurities from Ca, Al, S may react to form (often) undesired solid phases during solidification
- these solid phases may cause nozzle clogging in continuous casting
- the solid inclusions often analysed with diffusion models such as IDS*

*Interdendritic solidification model,

Holappa, L. &al 6th Int.Conf.on Clean Steel, Balatonfured, Hungary, 10-12 June 2002

Equilibrium phase diagram for the CaO-Al₂O₃ system

Constraint set for solid Fe-phase formation

CFE Chemsheet inclusion model compared with IDS

Partial equilibria of oxide and sulphide inclusions in steel solidification with composition C 0.35 %, Si 0.25 % S 0.25 %, O 20 ppm, Ca 20 and Al 200 ppm.

 No kinetics assumed for the inclusion phases in CFE (IDS has kinetics, not published)

FactSage T,ξ-diagram for CA-inclusion phases

Molar ratios O₂/Fe =7.06E-5, Al/Fe = 1.26E-4, Si/Fe=5.01e-3, Ca/Fe =2.82E-5.

- Extent of solidification (ξ, related to total Fe) used as axis for a non-equilibrium phase diagram
- Solid lines indicate the (partial) equilibrium phase boundaries
- The dotted and dash-dotted lines represent iso-activities of the virtual phase r_1
- The striped area with stable r₁-phase exceeds the equilibrium limit of solid and liquid iron corresponds to the superheated solid in a reverse (melting) process
- Diagram is an easy-to-use tool for studying inclusion formation as partial equilibrium phases
- No kinetic assumptions or parameters

VTT

T,ξ-diagram and T,D-diagram compared

- in the T,D-potential diagram (left) the solid lines indicate co-existence of phases at equilibrium
- Fe(s)-Fe(liq) -equilibrium in the potential diagram is at the zero affinity vertical line in the middle
- The shaded areas represent the undercooling sections of the solidification process.
- The inclusion (Ca-aluminate) phases are shown in both diagrams according to their partial equilibrium stability.

VTT

Example of an aqueous system

- In the Solvay BIR process CO₂ is absorbed to a sodium carbonate solution
- Sodium bicarbonate (NaHCO₃) is formed in the overall reaction:
- $Na_2CO_3(aq) + CO_2(g) + H_2O \Leftrightarrow NaHCO_3 \downarrow$
- absorption rate of CO₂(g) => CO₂(aq) is deemed critical
- Use a phase diagram studies
 aqueous phase equilibrium
 - state od the solution and phase formation as function of the extent of the CO₂ absorption

Equilibrium phase diagram for the CO₂-H₂O-Na₂CO₃ system

0.1

Na₂CO₃/H₂O (mol/kg)

EOR -constraints for CO₂ absorption and NaHCO₃ formation

Constrained reactions with virtual components \boldsymbol{v}_1 and $\boldsymbol{v}_2\text{:}$

 $CO2(g) \Rightarrow CO2(aq)$ (1)

 $Na_2CO_3(aq) + CO_2(aq) + H_2O \Leftrightarrow NaHCO_3 \downarrow$ (2)

Constraints affect either products or reactants: respectively, forward or reverse reactions can be constrained Note: if only positive elements can be used for the applied software, only products of each reaction can then be affected

EOR -constraints for CO₂ absorption and NaHCO₃ formation

Constrained reactions with virtual components \boldsymbol{v}_1 and \boldsymbol{v}_2 :

 $CO_2(g) \Rightarrow CO_2(aq)$ (1)

 $Na_2CO_3(aq) + CO_2(aq) + H_2O \Leftrightarrow NaHCO_3\downarrow$ (2)

Partial equilibrium CFE model:

- Constraint only for reaction (1), no time-dependent kinetics
- 0.283 m Na_2CO_3 and 0.226 m $NaHCO_3$ in the solution
- $T = 20 C, P(CO_2) = 1 atm$
- pH vs EOR of CO₂ absorption compared with measured results (Wylock & al, 2008 converted to [H+] activity scale)

T, ξ - phase diagram for the CO_2 - H_2O - Na_2CO_3 absorption system

- 25 Wylock &al (pH by [Hactivities) ag + gas real + r. 23 폯 H=7.4 pH<u></u>=9.6 pH=9.2 21 Extent of CO, absorption (mol/kg H₂O) ٦(°C) pH=10.337 pH=7.408 pH=10.2 pH≑10 pH=9.8 10 aq + gas real NaHCO, + aq + gas_real +r, 17 NaHCO + aq + gas_real pH(max) = 10.400H(min) = 7.25915 0.1 0.2 0 0.3 0.4 EOR CO, absorption (mol/kg_{Ho}) virtual component (v1) related to amount of water
- *This non-physical condition could be avoided by setting the virtual phase r_1 dormant and the result would then show the supersaturated solution condition

- Reaction (1) constrained (CO_2 absorption, same input conditions as in the ChemSheet model)
- Affinity of reaction (2) set to zero (equilibrium); solubility limit of NaHCO₃ is seen by the phase boundaries (solid lines)
- Intermediate iso-pH lines are calculated assuming no other kinetic restriction than extent of reaction (EOR) of CO₂-absorption
- Under this assumption the iso-pH lines may be used to indicate advancement of the CO₂ absorption
- The striped area to the right exceeding the equilibrium limit of CO₂-absorption shows the 'virtual phase r₁ appearing as stable*.

Summary

- D,ξ-technique is generally applicable in Calphadian problems*
- Allows for graphical studies of partial equilibrium conditions (as typical phase diagrams) during the course of selected slow reactions
- ⇒ new kinds of phase diagrams which include the driving force and extent of chemical change as axis variables
- currently implemented in FactSage in the form of virtual (massless) Q_{a,b,c...} components

*Koukkari, P., Pajarre R.: Phase diagrams with the driving force and extent of reaction as axis variables, Calphad Journal (in press).

More details & references

Thank you For your attention!

<u>pertti.koukkari@vtt.fi</u> risto.pajarre@vtt.fi

