Combining the power of computational thermochemistry with the convenience of Python programming:

My experience with ChemAppPy

Sabrine Khadhraoui ¹), Markus A. Reuter ¹), Johan Zietsman ²)

¹) SMS group GmbH, Germany
²) Ex Mente technologies, South Africa

GTT Users' Meeting (Virtual), June 2021
Content

1. Background
2. Why ChemAppPy?
3. What I gained so far
4. Conclusion
1. My background

- I am metallurgical engineer specialised in modeling, control and optimization of metallurgical furnaces (steelmaking, non-ferrous metallurgy)

- 10 years of experience using thermochemical application
 - FactSage™ regularly
 - SimuSage for dynamic process modeling, in a close cooperation with GTT (oxygen converter, lead smelting in the TSL process)

- Limited experience with coding:
 - Applications developed mainly by co-workers (programmers)
 - Moderate experience using the software Matlab:
 - University days
 - Mathematical process modeling + solving numerical problems (with assistance)
2. Why ChemAppPy?
2. Why ChemAppPy?

- FactSage
 - a powerful tool that I use on a daily basis for evaluating the thermodynamic equilibrium state relevant to our processes
 - there has always been a need to use FactSage calculation options as an integrated module into a programming environment so that we can
 - automate thermochemical calculation tasks
 - inputs for the calculations
 - the post-processing of the results
 - integrate computational thermochemistry into existing digital platforms in SMS group

 those possibilities are provided by: ChemApp + ChemAppPy
2. Why ChemAppPy?

Digital TWINNING resource systems of SMS: Integrating our expertise, in-depth understanding of technology, and theoretical knowledge into digital platforms
2. Why ChemAppPy?

- **ChemApp** provides the flexibility that we are seeking
 - is an API (application programmer’s interface)
 - However, there was a *language* issue!
 - It has an interface to C and Fortran
 - For someone with a little programming experience, learning those coding languages is challenging
 - this was the case for me during learning DELPHI and C#
 - made me question the *effort-benefit* since I will use those programs only „occasionally“
 - Python was recommended to me as a much easier to learn coding language
2. Why ChemAppPy?

- **ChemAppPy**: became commercially available in 2019
 - made ChemApp available in a Python environment
 → we considered this as a chance to achieve our goals
 - The original functions in ChemApp are now grouped into few classes, which are easier to remember and work with:
 - Info, Units, ThermochemicalSystem, EquilibriumCalculation, StreamCalculation, PhaseMapCalculation

- Further additional functions are included in order to
 - make the calculations easier and quicker to do
 - post-processing and visualizing the calculation results.
3. What I gained so far
3. What I gained so far

- Programming with Python:
 - using thermochemistry in Python made me part of a large online community from which there is a lot to learn and exchange!
 - The effort to learn Python was considerably less than for other coding languages:
 - Python-Training is one part of ChemAppPy-Training: The fundamental concepts + the basic functions needed for ChemAppPy are introduced.
 - It took me about 2 weeks with an effort of 2-4 h/day to get the basics of Python and be able to work with it by myself
 - once getting over the „hurdle“ of learning how to code
 - I can now use many powerful python packages such as Pandas (data preparation and analysis) and Matplotlib (visualization)
3. What I gained so far

- Enjoying not only the power but also the **friendliness** of ChemAppPy
 - The calculation functions are grouped into few **Classes**
 - when the class is called, a list of the corresponding functions appears:

- The indexing adopted is consistent throughout the program (**A** for amount, **ph** for phase, **pc** for phase const,.....)

 focus more on **what** I want to do rather on **how** to do it

 less learning effort Vs. more **comfort** and **fun** working with the program!
Conclusion

- The need to flexibly use thermochemistry in SMS has been there for a while.
- The development and availability of ChemAppPy brought us closer to achieving our goals.
 - We were now able to automate the thermochemical calculations and thus work more efficiently.
 - We are heading into our goal of integrating ChemAppPy into our digital platforms in the scope of a close cooperation between:
 - SMS group: R&D + Non-Ferrous Process and Technology
 - SMS digital
 - GTT and Ex Mente
Thank you for your attention!

Questions? please contact me under:

<table>
<thead>
<tr>
<th>Sabrine Khadhraoui</th>
<th>+49 211 / 881 – 5162</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D Melting and Casting Technology</td>
<td>sabrine.khadhraoui@sms-group.com</td>
</tr>
</tbody>
</table>

SMS group GmbH

https://www.sms-group.com