

ISO-VISCOSITY CURVES FOR CaO-SiO₂-Al₂O₃-MgO STEELMAKING SLAGS AT 1500°C

Augusto Lachini Pereira – LaSid/Federal University of Rio Grande do Sul Vinicius Cardoso da Rocha – LaSid/Federal University of Rio Grande do Sul Wagner Viana Bielefeldt – LaSid/Federal University of Rio Grande do Sul Antônio Cezar Faria Vilela – LaSid/Federal University of Rio Grande do Sul

Date: 12/06/2020

Summary

- INTRODUCTION
- DEVELOPMENT
 - Experimental X calculated
 - Iso-viscosity curves
- RESULTS AND DISCUSSION
 - Convergence data
 - Iso-viscosity curves
- CONCLUSIONS
- NEXT STEPS

Why study the viscous behavior of the steelmaking slags?

• For thermodynamic predictions it is possible to apply mathematical models or thermodynamic softwares to obtain viscosities for a given range of chemical composition and temperature of slags.

• As known, steelmaking slags in high temperatures presents two-phase melt, Phase Mixture, in which it contains a liquid fraction and a solid fraction.

 The steelmaking slags, at secondary refining, conventionally contains CaO, SiO₂, Al₂O₃, MgO,

(CSAM System);

Solid particles hamper the viscosity measurements in the Phase Mixture.

- The aim of the present work is to apply a mathematical model and thermodynamic software, *FactSage 7.2*, to the Phase Mixture and thermodynamic software to the Liquid Phase, *FactSage 7.2*, to obtain the slags viscosities in <u>CSAM system</u>, for a given temperature of <u>1500°C</u> and within a range of chemical composition of slags.
- And calculate the convergence of the experimental data, collected in the literature, with a calculated data.

DEVELOPMENT - Experimental X calculated

 In order to verify the accuracy of the FactSage 7.2 software in the system CSAM, experimental viscosity data were collected through published works

System	Author	Method	Crucible	Data
	Machin,1945	Oscillating	Pt	5
	Machin, 1948	Oscillating	Pt	43
SiO ₂ -Al ₂ O ₃ -CaO	Machin, 1952	Oscillating	Pt	16
Data: 90	Machin, 1954	Oscillating	Pt	12
	Kozakevitch, 1954	Rotating cylinder	Mo/W	12
	Pengcheng, 2016	Rotating cylinder	Мо	2
	Machin,1945	Oscillating	Pt	15
	Machin, 1952	Oscillating	Pt	48
	Machin,1954	Oscillating	Pt	32
	Hoffman,1959	-	-	10
SiO2-Al2O3-CaO-MgO	Kozakevitch, 1966	Rotating cylinder	Mo/W	3
Data:152	Kowalski,1995	-	-	21
	Saito,2003	Rotating cylinder	Pt/Rh	3
	Kim,2010	Rotating cylinder	Pt/Rh	4
	Song,2011	Rotating cylinder	Mo	6
	Pengcheng, 2016	Rotating cylinder	Мо	10
Total Data				242

Hoffman, 1959

Kowalski,1995

Saito, 2003

Kim,2010

Liquid phase

Kozakevitch, 1966

DEVELOPMENT - Experimental X calculated

CaO S

CaO S

 Al_2O_3

8

 Al_2O_3

GTT Users' Meeting 2020

DEVELOPMENT - Iso-viscosity curves

• Composition ranges of calculated slags in the viscosity database (mass%).

System	Phase	MgO	SiO ₂	Al ₂ O ₃	CaO	Calculated Data
SiO ₂ –Al ₂ O ₃ –CaO–MgO Data: 5976	Liquid	0	0 - 76	0 - 54	6 - 60	535
	Mixture	0	0 - 43	0 - 77	23 - 100	902
	Liquid	5	0 - 78	0 - 60	0 - 54	814
	Mixture	5	0 - 42	0 - 65	29 - 95	666
	Liquid	10	0 - 80	0 - 58	0 - 52	632
	Mixture	10	0 - 46	0 - 67	12 - 90	1025
	Liquid	15	32 - 70	0 - 36	0 - 44	608
	Mixture	15	0 - 40	0 - 56	28 - 85	794

DEVELOPMENT - Iso-viscosity curves

• In order to verify the convergence between the *FactSage* calculations and the reference viscosity data, for each slag composition, it was evaluated by the difference between measured and calculated viscosity value:

$$\delta_i = \frac{\eta_{Reference} - \eta_{FactSage}}{\eta_{Reference}}$$

• A performance analysis of the reference source on viscosity (η) calculations through FactSage was evaluated by average relative error, Δ , for N measurements of viscosity.

$$\Delta = \frac{1}{N} \sum_{i=1}^{N} \delta_i \times 100\%$$

RESULTS AND DISCUSSION - Convergence data

According with Literature, the viscosity measurements values may differ from recommended values by an average of ± 30%.

Machin,1945	∇	Hoffman,1959
Machin,1948	\boxtimes	Kozakevitch,1966
Machin,1952	*	Kowalski,1995
Machin,1954	Φ	Saito,2003
Kozakevitch,1954	\oplus	Kim,2010

Song,2011 Pengcheng,2016

RESULTS AND DISCUSSION - Iso-viscosity curves

10% MgO

c)

CaO

- MgO typically as a network "modifier"
- CaO

Liquid Phase: viscosity

decrease

Phase Mixture:

"double effect"

Melilite

Liquid phase

Phase mixture

Liquid Fraction 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RESULTS AND DISCUSSION - Iso-viscosity curves

Melilite $((Ca_2(Al,Mg,Fe^{2+})(Si,Al)_2O_7)$

- Slag-liq
- 2 Ca{3}SiO{5} + Monoxide + Slag-liq
- 3 Monoxide + Slag-liq
- 4 Ca{3}Al{2}O{6} + Monoxide + Slag-liq
- 5 Ca{2}SiO{4}(s3) + Ca{3}SiO{5} + Slag-liq
- Ca{2}SiO{4}(s3) + Slag-liq
- 7 Ca{2}SiO{4}(s3) + Melilite + Slag-liq
 - Melilite + Slag-liq
- CaAl{2}O{4} + Melilite + Slag-liq
- 0 CaAl{2}O{4} + Slag-liq
- 11 CaAl{2}O{4} + CaAl{4}O{7} + Melilite
- 12 CaAl{4}O{7} + Melilite + Slag-liq
- 3 CaAl{4}O{7} + Slag-liq
- 14 Monoxide + Monoxide#2 + Slag-liq + a-(Ca,Sr)2SiO4
- 15 Monoxide + Monoxide#2 + Slag-liq
- 16 Monoxide + Slag-liq + a-(Ca,Sr)2SiO4
- 17 Slag-liq + a-(Ca,Sr)2SiO4
- 18 Melilite + Slag-liq + Spinel
- 19 Slag-liq + Spinel
- 20 CaAl{2}O{4}+ Slag-liq + Spinel
- 21 Ca{3}MgSi{2}O{8} + Monoxide + Slag-liq + a-(Ca,Sr)2SiO4
- 2 Ca{3}MgSi{2}O{8} + Slag-liq + a-(Ca,Sr)2SiO4
- 23 Monoxide + Slag-liq + Spinel
- 24 CaAl{4}O{7} + Melilite + Slag-liq + Spinel
- CaMg{2}Al{1}{6}O{2}{7} + Melilite + Slag-liq + Spinel
- Ca{3}MgSi{2}O{8} + Monoxide + Slag-liq
- 27 Ca{3}MgSi{2}O{8} + Slag-liq

RESULTS AND DISCUSSION - Iso-viscosity curves

 Increase of SiO₂
 Liquid Phase showed an expressive increase in the slag viscosity.

Liquid phasePhase mixture

Liquid Fraction
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CONCLUSIONS

- The viscosities calculated through chemical compositions of the literature were generally within the acceptable range of relative error compared to the literature (up to 30%).
- By the analysis proposed it is possible to visualize that the effect of the MgO content decreases the viscosity in the Liquid Phase.
- The effect of the CaO oxide for the Phase Mixture showed a double effect. Initially a
 reduction in viscosity subsequently, tends to increase viscosity. However in Liquid Phase
 tends to decrease the viscosity.
- The *FactSage 7.2* showed to be very promising for the creation of quarteternary systems with iso-viscosity curves.

Acknowlegments

Next steps

Influence

Several temperatures [1500-1700°C]

Oxides (FeO, TiO₂, MgO)

CaO-SiO₂-Al₂O₃ system (%mass) at 1600°C

-0.1 -0