Database development for the HotVeGas project

Elena Yazhenskikh¹, Klaus Hack², Michael Müller¹

¹ - Forschungszentrum Jülich, Institute of Energy and Climate Research (IEK-2, Microstructure and properties of materials), Germany

² - GTT-Technologies, Germany

GTT Users' Meeting 2019, June 26 - June 28, Herzogenrath, Germany

Mitglied der Helmholtz-Gemeinschaft

Alkali +TiO₂

Database development: Si⁴⁺O₂ replaced by Ti⁴⁺O₂

Thermodynamic data

mole% TiO₂	Compound	Ср	ΔH _f ⁰ , S ⁰	Compound	Ср	ΔH _f ⁰ , S ⁰
0.333	Na₄TiO₄	FTox [1]	S [1]; H_{f} , ΔH_{m} optimised $K_{4}TiO_{4}$ F		FTox [1]	S as [1] for Na₄TiO₄ H optimised; ΔH _m – [1]
0.5	Na ₂ TiO ₃	SGPS [2,3]	S [SGPS]; H - exp. [4]	S [SGPS]; H - exp. [4] K₂TiO₃ FTox [S as [1] for Na ₂ TiO ₃ ; H exp. [4]
0.555	Na ₈ Ti₅O ₁₄	FTox [1]	H, S-optimised	S-optimised		
0.6				K ₄ Ti ₃ O ₈	NK	H,S optimised; confirmed in [5,6]
0.667	Na ₂ Ti ₂ O ₅ *	SGPS	Not stable	K ₂ Ti ₂ O ₅ *	FTox [1]	S as [1] for Na ₂ Ti ₂ O ₅ ; H opt.
0.75	Na ₂ Ti ₃ O ₇	FTox [1]	S-[1], H- optimised	K ₂ Ti ₃ O ₇ <i>It was not considered, because its ex is not confirmed in literature</i>		considered, because its existence firmed in literature
0.8				K₂Ti₄O ₉	NK	H,S optimised; confirmed in [7,8]
0.857	Na ₂ Ti ₆ O ₁₃	FTox [1]	S– exp. [9]; H–optimised	K ₂ Ti ₆ O ₁₃	FTox [1]	H,S optimised

[1] G. Eriksson, A.D. Pelton, Metal. Trans. B 24 (1993) 795-805.
[2] SGPS - SGTE pure substances database (v13.1) 2017.
[3] I. Barin, Thermochemical Data of Pure Substances, 1995.
[4] B.I. Panfilov, Zh. Neorg. Khim. 10(8) (1965) 1844-1847.
[5] E.K. Belyaev et al., Neorg. Mater. 10(3) (1974) 460-464.

[6] C.E. Bamberger et al., Applied Spectroscopy 44(1) (1990) 30-37.
[7] A.J. Easteal, D.J. Udy, High Temp. Sci. 4 (1972) 487-495.
[8] F. Yoshinori, Yogyo Kyokai-Shi 90(10) (1982) 76-78
[9] J.M. Stuve, J. Chem. Eng. Chem. 27 (1982) 391-392

4

JÜLICH Forschungszentrum

Phase equilibrium data for system with K_2O are scarce. The assessment was done based on additional data regarding formation, structure and thermodynamics of the titanates

GTT Users' Meeting 2019

Thermodynamic modelling

phase	model	description	data
slag	Non-ideal associate model	Alk₂O , Ti, Ti ₂ O ₂ , Ti ₂ O ₃ , Ti ₂ O ₄ , Alk ₄ TiO4 ₃ /2.5	FZJ, GTT
(K ₂ TiO ₃):(Na ₂ TiO ₃)=1:1	stoichiometric	Cp – NK; H,S - optimised	FZJ
(K ₂ TiO ₃):(Na ₂ TiO ₃)=2:1	stoichiometric	Cp – NK; H,S - optimised	FZJ

Ternary system was modelled/extrapolated based on the experimental data the pseudo-binary section $K_2 TiO_2$ -Na₂TiO₃.

Alkali +V₂O₅

Database development: P⁵⁺₂O₅ replaced by V⁵⁺₂O₅

Thermodynamic data

$Na_2O:V_2O_x$	Compound	Ср	ΔH _f ⁰ , S ⁰	Slag	Remarks
1:6	NaV ₆ O ₁₅	NK	optimised		Bronze, $\frac{1}{2}(Na_2O+V_2O_4+5V_2O_5)$ or $\frac{1}{2}(Na_2O+xV_2O_4+(6-x)V_2O_5) x=1$
1:3	$Na_2V_6O_{15}$	NK	optimised		Bronze: as (Na ₂ O+xV ₂ O ₄ +(3-x)V ₂ O ₅) x=1
2:5	$Na_4V_{10}O_{27}$	-	-		Reported in [1,2], but later not confirmed
5:12	$Na_{5}V_{12}O_{32}$	-	-		Reported in [3] as $(5Na_2O+xV_2O_4+(12-x)V_2O_5)$, but later not confirmed
1:1	NaVO ₃	[4]	[4]	NaVO ₃	Liq. species <u>AlkMO₃</u> (Alk=Na, K; M=P, V)
5:3	$Na_5V_3O_{10}$	NK	S–optimised; H-exp.[5]		
2:1	$Na_4V_2O_7$	[4]	[4]	$Na_4V_2O_7/3$	Liq. species $\underline{Alk_4M_2O_7}$ (Alk=Na, K; M=P, V)
3:1	Na ₃ VO ₄	FTox	optimised	Na ₃ VO ₄ /2	Liq. species <u>Alk₃MO₄</u> (Alk=Na, K; M=P, V)

[1] V. Danek, J. Balajka, K. Matiasovsky, Chem. Zvesti 27(6) (1973) 748-751.

[2] M.P. Glazyrin, A.A. Fotiev, Inorg. Mater. (Engl. Transl.) 4(1) (1968) 67-70.

[3] R.C. Kerby, J.R. Wilson, Can. J. Chem. 51(7) (1973) 1032-1040.

[4] I. Barin, Thermochemical Data of Pure Substances, In: VCH Verlagsgeselschaft mbH, 1995.

[5] B.G. Golovkin, L.V. Kristallov, M.V. Kruchinina, Russ. J. Inorg. Chem. 40(3) (1995) 496-500.

K-V-O

Thermodynamic data

$K_2O:V_2O_x$	Compound	Ср	ΔH _f ⁰ , S ⁰	Slag	Remarks
1:6	KV ₆ O ₁₅	NK	optimised		Bronze $\frac{1}{2}(K_2O+V_2O_4+5V_2O_5)$, stable in air [1]
1:4	$K_2V_8O_{21}$	NK	optimised		Bronze, reported in [1-3], confirmed in [4]
1:3	KV ₃ O ₈	NK	H-exp.[5];Bronze, but currentlyS-opt. $(K_2O+3V_2O_5)$		Bronze, but currently was modelled as $^{1\!\!/_2}$ (K_2O+3V_2O_5)
3:5	K ₃ V ₅ O ₁₄	NK	H–exp.[5]; S-optimised		Reported in [3], later confirmed in [4]
1:1	KVO ₃	NK (mod.)	S–[6]; H–exp. [5]; ΔHm –NaVO ₃	KVO ₃	Liq. species <u>AlkMO₃</u> (Alk=Na,K; M=P, V)
5:3	K ₅ V ₃ O ₁₀	NK	optimised		Reported in [4]
2:1	$K_4V_2O_7$	NK (mod.)	S–[6]; H–exp.[5]; ΔHm – Na ₄ V ₂ O ₇	K ₄ V ₂ O ₇ /3	Liq. species <u>Alk₄M₂O₇</u> (Alk=Na, K; M=P, V)
3:1	K ₃ VO ₄	NK (mod.)	S, H – [6]; ΔHm – Na ₃ VO ₄	K ₃ VO ₄ /2	Liq. species <u>Alk₃MO₄ (</u> Alk=Na, K; M=P, V)

[1] V.V. Illarionov, R.P. Ozerov, E.V. Kil`disheva, Zh. Neorg. Khim. 1(4) (1956) 777-782.

[2] A.A. Fotiev, M.P. Glazyrin, S.I. Alyamovskii, Russ. J. Inorg. Chem. 12(5) (1967) 701-703.

[3] M.P. Glazyrin, A.A. Fotiev, Russ. J. Phys. Chem. 42(10) (1968) 1288-1290.

[4] C. Ye-Qing et al., Chin. Phys. B 20(7) (2011) 076401-076407.

[5] M.Y. Khodos et al., Neorg. Mater. 16(3) (1980) 502-504

[6] T.B. Lindemer, T.M. Besmann, C.E. Johnson, J. Nucl. Mater. 100(1-3) (1981) 176-226.

Mitglied der Helmholtz-Gemeinschaft

GTT Users' Meeting 2019

 $K_2O-V_2O_5$, $Na_2O-V_2O_5$

Calculated phase equilibria

Mitglied der Helmholtz-Gemeinschaft

GTT Users' Meeting 2019

JÜLICH Forschungszentrum

Thermodynamic modelling

phase	model	description	data	
slag	Non-ideal associate model	V, V ₂ O ₂ , V ₂ O ₃ , V ₂ O ₄ , V ₂ O ₅ , Alk ₂ O, Alk ₂ O:V ₂ O ₅ =1:1, 2:1, 3:1	FZJ, GTT	
(NaVO ₃):(KVO ₃)=3:1	stoichiometric		FZJ	reported in [1]
(NaVO ₃):(KVO ₃)=2:1	stoichiometric	Cp – NK; H S - optimised	FZJ	reported in [2], but not confirmed in [1,3]
(NaVO ₃):(KVO ₃)=1:1	stoichiometric	n,o - optimised	FZJ	reported in [1-3]
(NaVO ₃):(KVO ₃)=2:1	stoichiometric		FZJ	reported in [2]

[1] J. Perraud, Rev. Chim. minerale 11(3) (1974) 302-326.

[2] I.N. Belyaev, T.G. Golovanova, Russ. J. Inorg. Chem. 13(6) (1968) 859-860.

[3] M.P. Glazyrin, A.A. Ivakin, A.P. Yatsenko, Russ. J. Inorg. Chem. 17(2) (1972) 280-281.

Ternary system was modelled/extrapolated based on the experimental data the pseudo-binary section KVO_3 -NaVO₃.

Mitglied der Helmholtz-Gemeinschaft

GTT Users' Meeting 2019

Na₂O-K₂O-V₂O₅

Calculated phase diagrams

V205

T°C

BaO-ZrO₂

Revision of thermodynamic data on BaZrO₃: heat capacity, entropy

Cp, J/mol·к	S⁰, J/mol∙K	Т, К	Method	[Ref]
Cp ₂₉₈ =101.71	124.68	53-297	AC	[King 1960]
Cp ₂₉₈ *=101.71		296-1606	H-H ₂₉₈ ,C	[Levitskii 1976]**
Cp ₂₉₈ *=101.71		1030-1687	H-H ₂₉₈ , DSC	[Nagarajan 1985]
Cp ₂₉₈ *=101.71		407-775	H-H ₂₉₈ , DROP	[Cordfunke 1989]
		298-1200	STA	[Vassen 2000]
Cp ₂₉₈ =107.71		400-1400	DSC	[Yamanaka 2003]
Cp ₂₉₈ =107.0	125.5	1.6-298	AC	[Ahrens 2006]
Cp _{304.4} =106.4	126.0	1.8-305	PPMS***	[Kurosaki 2006]
	124.68			Fact PS
	125.5			SGPS
Cp ₂₉₈ =101.71	124.68			our database

*derivative of H-H₂₉₈; **transitions were reported: at 758, 1175K with Δ H=0, 1.38; ***-hybrid adiabatic relaxation method

$$H(T) = \Delta H_{f,298.15}^{0} + \int_{298.15}^{T} c_{p}(T) dT$$
$$S(T) = S_{298.15}^{0} + \int_{298.15}^{T} \frac{c_{p}(T)}{T} dT$$

15

Mitglied der Helmholtz-Gemeinschaft

AC- adiabatic calorimetry; C-calorimetry

GTT Users' Meeting 2019

JÜLICH Forschungszentrum

BaO-ZrO₂

Revision of thermodynamic data on BaZrO₃: heat content

ΔH ⁰ , J/mol	Т, К	Method	[Ref]
-1745.0		E	[Shibanov 1969]
-1779.5		E	[Parker 1971]
-1769.0			[Kubashevski 1993]
-1694.0		evaluated ¹ on KEMS	[Odoj 1976]
-1761.9	1673-1873	СВ	[L`vova 1964]
-1771.4	1068	SC	[Takayama 1988]
-1785.4 ² -1779.5 ³ -1765.4 ¹	1180-1320	EMF	[Levitskii 1978]
-1776.1 (-1721.7 ⁴)	1203-1347	P(Ba), KML⁵	[Dash 1990]
-1767.7	1203-1347	P(Ba), KML ⁵	[Dash 1994]
-1774.8		DROP	[Cordfunke 1990]
-1779.45			Fact PS
-1770.0			SGPS
-1779.45			our database

-1680 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 T(K)

16

E-evaluation; CB-calorimtric bomb; SC-solution calorimetry 1-evaluated in the book [Cordfunke 1990]; 2-mean value; 3-value from calorimetry;

4-third-law value; 5-Knudsen mass-loss technique

Mitglied der Helmholtz-Gemeinschaft

GTT Users' Meeting 2019

BaO-ZrO₂

Revised thermodynamic data on BaZrO₃

BaO - ZrO, - O, GactSage" p(O_) = 0.21 atm, 1 atm **BaO-ZrO**₂ TA [Shevchenko 1987] [Vassen 2000] DTA in He [Shevchenko 1987] scan data [Shevchenko1987] 3000 exp data [Adamson 1985] exp.data [Von Wartenberg 1931] scan data [Von Wartenberg 1931] Calculated phase equilibria 2500 LIQ LIQ + MeO2-HT BaZrO3 + LIQ BaZrO, + LIQ ZrC 2000 Bazro, + LIG BaO + LIC () 1500 BaZrO₃ + Ba₂ZrO BaZrO1 + ZrO2-MT Ba2rO4 + Ba2r207 **ZrO₂-HT** (Zr⁴⁺, Zr²⁺, **Ba²⁺**)(<u>O²⁻</u>, Va)₂ 1000 ZrO₂-MT (ZrO₂, BaO₂)₁ BaZrO₃ + Ba₃Zr₂O₇ BaZrO₁ + ZrO2-LT BaO + BazZrO4 500 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 -1

BaO/(BaO+ZrO2) (mol/mol)

phase	model	description	data
Liquid	Modified associate species	Ba, Zr, Ba₂O₂, Zr₂O₄ , O	FZJ
MeO2-HT	Sublattice model	(Zr ²⁺ ,Zr ⁴⁺ ,Ba ²⁺)(O ²⁻ ,Va) ₂	GTT-FZJ
ZrO2-MT	Sublattice model	(ZrO ₂ , BaO ₂)	GTT-FZJ
gas	ideal		SGPS
BaZrO ₃	Stoichiometric thermodynamic	BaO:ZrO ₂ =1:1	FZJ
Ba ₃ Zr ₂ O ₇	data are revised based on the	BaO:ZrO ₂ =3:2	FZJ
Ba ₂ ZrO ₄	literature	BaO:ZrO ₂ =2:1	FZJ

Mitglied der Helmholtz-Gemeinschaft

GTT Users' Meeting 2019

 $La_2O_3-WO_3$

Literature review

Exp.: DTA, XRD, CA¹, DA²

E. Ya. Rode et al., Zh. Neorg. Khim., 13 [5] 1451-1456 (1968);

M. Yoshimura and A. Rouanet, Mater. Res. Bull., 11 [2] 151-158 (1976)

Exp.: DTA, XRD, DA², VP³, HSM⁴

M. M. Ivanova et al., Akad. Nauk Izv. SSSR, Neorg. Mater., 6 [5] 914-919 (1970);

Exp.: XRD

V.K.Yanovskii, V.I.Voronkova, Izv. Akad. Nauk SSSR, Neorg. Mater., 19 [3] 416-421 (1983);

Mitglied der Helmholtz-Gemeinschaft

GTT Users' Meeting 2019

 La_2O_3 -WO₃

Cp is modelled based on the available H-H₂₉₈ data; H and S are optimised based on thermodynamics and phase equilibria

 $La_2O_3:WO_3=1:1, La_2WO_6$

Calculated phase equilibria

> Solid solubility is modelled based on

Mitglied der Helmholtz-Gemeinschaft

Mitglied der Helmholtz-Gemeinschaft

On behalf of all co-authors: Thank you for your attention! Vielen Dank für Ihre Aufmerksamkeit! Благодарю за внимание!

Mitglied der Helmholtz-Gemeinschaft

GTT Users' Meeting 2019