Rational Approaches to Synthesis and Crystal Growth of Rare Earth Metal Tellurides

Tom Donath, <u>Peer Schmidt</u> BTU Cottbus-Senftenberg

Herzogenrath 28.06.2019

INORGANIC SOLIDS AND MATERIALS

Brandenburgische Technische Universität Cottbus - Senftenberg

b-tu

SCIENTIFIC INSTRUMENT ENGINEERING

https://www.b-tu.de/en/inorganic-chemistry

RESEARCH STRATEGY

RATIONAL APPROACHES TO SYNTHESIS OF RARE EARTH METAL TELLURIDES

b-tu Brandent Technisch Cottbus -

Brandenburgische Technische Universität Cottbus - Senftenberg

Phase diagram containing binaries:

GdTe	1825 ⁰C ± 15 K
$\operatorname{Gd}_3\operatorname{Te}_4\ldots\operatorname{Gd}_2\operatorname{Te}_3$	1255 ºC…1215 ºC
Gd ₄ Te ₇	1190 °C
GdTe ₂	1000 °C
Gd ₂ Te ₅	920 °C
GdTe ₃	832 °C

V.Sh. Zargaryan, N.Kh. Abrikosov, Izv. Akad. Nauk SSSR,

Neorgan. Mater. 3, 1967, 769-776.

Massalski, T.B. (editor-in chief): "Binary Alloy Phase Diagrams" Sec. Edt., Vol. 2, 1990.

Additional knowledge on existence of $GdTe_{2-x}$ (GdTe_{1.8})

Y. Wu, T. Doert, P. Böttcher, Z. Anorg. Allg. Chem. 2002, 628, 2216-2216.

Thermodynamic standard data by EMF measurements

T.Kh. Azizov, A.B. Agaev, A.S. Abbassov, A.G. Gusenkov, Dokl. Akad. Nauk Az. SSR 36 1980, 37.

CALCULATION OF PHASE DIAGRAM

Brandenburgische Technische Universität Cottbus - Senftenberg

8

EVALUATION OF STANDARD DATA

CALCULATION OF PHASE BAROGRAM

Brandenburgische

Technische Universität Cottbus - Senftenberg

b-tu

CRYSTAL GROWTH BY VAPOR TRANSPORT

CHEMICAL VAPOR TRANSPORT (CVT)

b-tu Branden Technisc Cottbus

	,		1, 25,	, 2651.		······	····•©······	
TRAGMIN 5.1	Nr. Ouit				SOU	rce	~	
	Data file			Elements	n / mmol	n / mol	m / mg	· ·
oad data	D:/C'Modellierung\Tragmin5.1_20	14\Tragmin5\calculation\GdTe\N-0	d-Te- 1	Gd	10	1.0000E-002	1572.500000	
	Job file:		2	Те	25	2.5000E-002	3190.000000	
Load job	no Jobfile		3	1	0.01	1.0000E-005	1.269050	Set N +
	Calculation	Show calculation out	out 4	N	1.0	1.0000E-003	14.007000	to
Save job	C One room, One temperat	Partial pressures						1.0 • mmol
	C One room, Temperature	eries Colubility of component	nts					ок
	Chemical vapor transport	Transport efficiencies						
Calculate	·	Migration rates						
	Constant Spec	cial calculations	T	R				
	C Pressure Vary:	C Pressure Vary: ☐ Mean temperature ☐ Quantity Volume		ig/h				GdTe18
View file	(• Volume			008				
	0.02							
GasGraph	Pressure (atm) Volur	ne (liter)						
Sussinghi	Temperatures		0.	.007				
	T (Source) / K T (S	nk)/K Delta T/K						
Create data f.	1200 1230	10	_					
	Exothermic Transport		0.	.0061				
1	Graphics							
Data base	C Partial pressures C Solubility of components			005		/		
Data Dase	i artiar prosouros		1.00			-		

Norm V Carbon Las do Las ton Las ton	TRAGMIN (extended transport model)	T ₂
and and	$\left(\frac{n(B)}{n(A)}\right)_{T_{\text{sink}}} = \left(\frac{flux(B)}{flux(A)}\right)_{T_{\text{source}} \to T_{\text{sink}}} = \frac{J(B)}{J(A)} = x_{\text{sink}}$	the molar flow of A and B
	$\left(\frac{p^*(B) - \mathbf{x}_{\text{sink}} \cdot p^*(A)}{p^*(X)}\right)_{\text{source}} = \left(\frac{p^*(B) - \mathbf{x}_{\text{sink}} \cdot p^*(A)}{p^*(X)}\right)_{\text{source}}$	$\left(\frac{A}{C}\right)_{sink} = \varepsilon$ stationarity condition
	$\frac{\left[\left(\frac{p^{*}(B)}{p^{*}(X)}\right)_{\text{source}} - \left(\frac{p^{*}(B)}{p^{*}(X)}\right)_{\text{sink}}\right]}{\left[\left(\frac{p^{*}(A)}{p^{*}(X)}\right)_{\text{source}} - \left(\frac{p^{*}(A)}{p^{*}(X)}\right)_{\text{sink}}\right]} = \frac{\Delta\lambda(B)}{\Delta\lambda(A)} = \mathbf{x}_{\text{sink}}$	of precipitation
	$w(i) = \Delta \left(\frac{p(i)}{p^*(X)}\right)_{\text{source } \to \text{ sink}} = \left(\frac{p(i)}{p^*(X)}\right)_{\text{source }} - \left(\frac{p(i)}{p^*(X)}\right)_{source$	$\frac{p(i)}{p^{*}(X)} \bigg _{\text{sink}}$ transport efficiency 14

EXPERIMENTAL CVT PROCESS

b-tu Brandenburgische Technische Universität Cottbus - Senftenberg

Anastasia Efimova **Tom Donath** Marie-Christin Giese Martin Grönke Robert Heinemann Monika Knorr Felix Lange Andre Meißner Ines Donath Bruno Reis Martin Wels

Bundesministerium für Bildung und Forschung

EUROPÄISCHE UNION

Europäischer Fonds für Regionale Entwicklung

aufgrund eines Beschlusses des Deutschen Bundestages

Gefördert durch:

Projekt GmbH

Augsburg University

GTT - TECHNOLOGIES

universits.

THANK YOU FOR YOUR ATTENTION

