

Designing the precursors for a new slag-based cement, the ELCE.

Yiannis Pontikes 27 June 2019

SREMat Sustainable Resources for

Engineered Materials

Our work-flow

Our structure

Processing

Cementitious binders

Inorganic Polymers

Design new clinkers Improve performance of mortars

Engineered materials

Design new precursors Improve performance of mortars

Home Contact Disclaimer Q

www.sremat.be

Ordinary Portland Cement

Concrete life-time is around 100 y Not recyclable Cannot handle fire Deteriorates with sea-water, chlorides, sulphides, acids, (...) Annual production ~ 4.2Gt/y

- ~0.8t CO₂/t cement clinker
 - Firing temperature 1450 °C
 - Mostly primary raw materials used
 - Can incorporate residues

Blended cements have lower footprint

To put it differently...

Romans did better!

What if ...?

The precursors for the new cement are locally sourced, and residues are included in the formulation, where OPC can be incorporated, leading to a binder that accommodates fluctuations, without compromising in performance.

> Locally-sourced, with residues, just-in-time, of high quality

We must rethink "cement"

Abundant raw materials (with low CO₂)

Process (low temp)

To deliver a powder that I will be able to shape in a form (I need a gas/liquid)

Make a crystal-growing binder

Make an amorphous binder

Meet ELCE

Meet the Extraordinary Leuven CEment

 α CaO- β "FeO"- γ Al₂O₃- δ SiO₂, $\alpha \leq 35, 25 \leq \beta \leq 75, \gamma \leq 10, \delta \leq 45; \alpha < \beta$, in mol%

From Wikipedia, the free encyclopedia

The **abundance of elements in Earth's crust** is shown in tabulated form with the estimated crustal abundance for each chemical element shown as either percentage or parts per million (ppm) by mass (10,000 ppm = 1%).

Rank	Z, element & symbol			Abundance in crust (ppm) by source					Annual production
¢	¢	¢	¢	Darling ^[1] ¢	Barbalace ^[2] ♦	WebElements ^[3] \$	Israel Science and Technology ^[4]	Jefferson Lab ^[5] ♦	(2016, tonnes) ^[6] ◆
1	8	oxygen	0	466,000	474,000	460,000	467,100	461,000	
2	14	silicon ^[A]	Si	277,200	277,100	270,000	276,900	282,000	7,200,000
3	13	aluminium	AI	81,300	82,000	82,000	80,700	82,300	57,600,000
4	26	iron	Fe	50,000	41,000	63,000	50,500	56,300	1,150,000,000
5	20	calcium	Ca	36,300	41,000	50,000	36,500	41,500	
6	11	sodium	Na	28,300	23,000	23,000	27,500	23,600	255,000,000
7	12	magnesium	Mg	20,900	23,000	29,000	20,800	23,300	1,010,000
8	19	potassium	к	25,900	21,000	15,000	25,800	20,900	
9	22	titanium	Ti	4,400	5,600	6,600	6,200	5,600	6,600,000
10	1	hydrogen	н	1,400		1,500	1,400	1,400	

Abundance of chemical elements in Earth's crust, from various sources

Abundance (atom fraction) of the chemical elements in Earth's upper continental crust as a function of atomic number. The rarest elements in the crust (shown in yellow) are not the heaviest, but are rather the siderophile (iron-loving) elements in the Goldschmidt classification of elements. These have been depleted by being relocated deeper into the Earth's core. Their abundance in meteoroids is higher. Additionally, tellurium and selenium have been depleted from the crust due to formation of volatile hydrides.

O, Si, Al, Fe, Ca, Na, Mg, K...

Iron ore production worldwide in 2016 by region (in million metric tons)

Sources

World Steel Association; United Nations © Statista 2018

Additional Information:

Worldwide; United Nations

Sources

Index Mundi; Thomson Reuters (Datastream); Worldwide; Thomson Reuters (Datastream); World Bank World Bank © Statista 2018

That can be sourced nearby

Reserves landfilled: >100 Mtons, in more locations not listed above

From 2015 to 2018

2018

Cement industry: 8% of total CO₂ No Ordinary Portland Cement used! We use ELCE!

Stairway to heaven

Blended in the right proportions

The process

FactSage calculation 1100 °C - Carbon + silica

Hertel, T. et al., Bauxite Residue Valorisation and Best Practices Conference, 5-7 October, 2015, Leuven, Belgium

The new precursor

Find the right slag chemistry that respects the metallurgical process and delivers the best possible IP

J. Van de Sande, 2017, MSc thesis, KU Leuven

As an example

Microstructure of the IP

- K-silicate activation solution, $SiO_2/K_2O = 1.6$, $H_2O/K_2O = 16$
- activation solution/solid ratio = 0.25
- Curing: 60 °C, 72 h

Microstructure of the IP

X-ray (a) and neutron (b) pair distribution functions derived from molecular dynamics simulation and compared with experimental data from the work of Peys et al.

The process

The process (P&ID, cont.#3)

Putting things in perspective...

Sustainable?

Firing between 1150 and 1200 °C

Can go lower than 1000 °C with fluxes

Low CO₂ (if any) in raw materials

 CO_2 still emitted due to Fe³⁺ reduction; but H₂ is coming up!

CO₂ capturing possible

Firing at 1450 °C

Formation of crystals limits the range of options

Limestone is the major raw material

Cannot avoid CO₂ production

CO₂ capturing possible

The most important thing: leveraging metallurgical knowhow

And this is not just a cement alternative

FIG.1 Fireproof cores (doors) Aircraft structure **Explosive deep** Foundry **Fiberboard Mesh** drilling Moulds element scrim Reinf. board Fiber Thermal **TBM** segments Reinforcement insulation for acid soils Secondary cont. porous thermal Acid pools acid chem. resistance resistance autoclaved Insulation core Paste Hardness Compressive formulation strength abrasives Embedded reactive **3D Printing building** polymers Grouting elements limited formulation unbound salts Hydrophobic Bricks & Tiles **Precast Elements** Self healing Oil well grouting Self Leveling CO2 storage grout TAXABLE PARTY OF STREET, STREET Anti-efflorescence Self-cleaning ALL DALLAR Photocatalytic (NOx, VOCs)

Going "big"

On-going work

On-going work

See more: recover.technology

Welcome to SReWay. Our tools are under construction.

Currently our only available tools are SReDat and SReTools in beta version.

SReGlass

SReCem

SReLCA

SReDat

SReClink

SReClinkN

SReInPol

SReHybCem

SReCOST

SReTools

https://www.sreway.info/

SRWWey Secondary Resource Database • Sign in Register About

(FeO)1.28(SiO₂)1(CaO)0.62

Rsr

Basic Information

SREWay code	56
Name	(FwO)1.28(StO2)1(CwO)0.82
Critically Assessed	No
Resource Category	Not available / Not listed / Not available / Not listed / Not available / Not listed (EEA code: 999.999.999)
Category Type	Synthetic
Basic information/introduction	Synthetic stag S1
Location	KU Leuven Department of Materiala Engineering, Leuven, Belgium
Location Longitude	(not zet)
Location Latitude	(not zet)
Source	Jom Van De Sande
Statua	

Chemistry

FeO - Iron Oxide (48.7 wl. %) SiO2 - Quartz (31.7 wl. %) CirlO - Calcium Oxide (18.2 wl. %) Al2O3 - Corundum (0.8 wl. %) Ramainder: 0.8 wl. %

Crystallites Composition

"amorphous" - 70 wt. % Fayalite - 28 wt. %

Raman

Description	
Deterte	Laser wavelength (nm): 532
Rew Hile	Download me

Fourier-transform infrared spectroscopy (FTIR)

X-ray Powder Diffraction

https://www.sreway.info/

Thank you!

