Addition of SrO to the HotVeGas and GTOX Oxide databases

GTT-Technologies

GTT Users Meeting, 26.06-28.06.2019 Herzogenrath

Tatjana Jantzen, Klaus Hack, Stephan Petersen

Addition of Strontium

GTT-Technolog	ies e and the second s					
GTT-Technologies Binary systems & Sr-O, Fe-Sr $& AI_2O_3$ -SrO & CaO-SrO & FeO-SrO		Ternary systems<> Fe-O-Sr<> FeO-Fe2O3-SrO<> SrO-MgO-SiO2				
*	Fe ₂ O ₃ -SrO	System	Associate species	Used data		
*	MgO-SrO	Sr-O	Sr, SrO	SGPS		
**	NiO-SrO	Al ₂ O ₃ -SrO	Al ₂ SrO ₄	GTT		
**	<i>P</i> ₂ <i>O</i> ₅ -SrO	SrO-Fe ₂ O ₃	Sr ₂ Fe ₂ O ₅	GTT		
*	SiO ₂ -SrO	SrO-P ₂ O ₅	SrP ₂ O ₆ , Sr ₂ P ₂ O ₇ , Sr ₃ P ₂ O ₈	GTT		
*	SrO-V ₂ O ₅	SrO-SiO ₂	SrSiO ₃ , Sr ₂ SiO ₄ , Sr ₃ SiO ₅	GTT		
÷.	SrO-ZnO					

The associate species containing SrO were added in order to describe the liquid phase. The composition of the liquid oxide species are as introduced by Spear taking two moles of cations per associate. Species for similar systems are modelled in the same way, i.e. using the same stoichiometry. The Sr-species were added according to Mg and Ca.

Binary Fe-Sr phase diagram

T.B. Massalski, Binary Alloy Phase Diagrams., ASM, 1990.

Binary Sr-O phase diagram

D. Risold, B. Hallstedt, L.J. Gauckler, CALPHAD, Vol. 20, Issue 3, (1996), pp. 353-361.

Strontium oxide

GTT-Technologies

MeO (AI⁺³, <u>Ca⁺²</u>, Cr⁺³, <u>Fe⁺²</u>, Fe⁺³, <u>Mg⁺²</u>, <u>Mn⁺²</u>, Mn⁺³, <u>Ni⁺²</u>, <u>Sr⁺²</u>, Ti⁺⁴, Ti⁺³, Zn⁺²)(O⁻²)

Al₂O₃-SrO phase diagram

SrO-Fe₂O₃ phase diagram in air

Oxygen nonstoichiometry of SrFeO_{2.5}-SrFeO₃ system

GTT-Technologies

Perovskite SrFe_{3- δ} can absorb oxygen gas at a relatively low partial pressure and release it at a higher partial pressure, which amounts to oxygen pumping.

The Sr-Fe-O phase diagram at 400°C

SrO–P₂O₅ phase diagram

New systems with NiO

New systems with V₂O₃ and V₂O₅

GTT-Technologies

Binary systems

- $AI_2O_3 V_2O_3$
- $CaO-V_2O_3$
- $SrO-V_2O_5$
- ZnO-V₂O₅ SrO V₂O₅ O₂

Ternary systems

- AI_2O_3 - Na_2O - V_2O_5
- CaO-Fe₂O₃-V₂O₃
- $CaO-MgO-V_2O_5$
- $CaO-SiO_2-V_2O_3$
- FeO-Fe₂O₃-V₂O₃
- Fe_2O_3 - Na_2O - V_2O_5
- $FeO-SiO_2-V_2O_3$
- *MgO-SiO*₂-*V*₂*O*₅
- *MgO-SiO*₂-*V*₂*O*₃
- $NiO-V_2O_5-ZnO$

ZnO–V₂O₅ phase diagram in air

Liquidus surface in CaO-SiO₂-V₂O₃

GTT-Technologies

M. S. Najjar and A. Muan, "Vanadium garnet materials", US Patent 4,980,320, December 25, 1990

"C 5" Wt %

Liquid

CaSiO.

SiO,

Liquid 1

80

100

V203

V203

CaVO 3

Ca₃V₂Si₃O₁₂- Vanadium Garnet or Goldmanite, calculated T_m=1339°C

The phase Garnet Ca₃(AI,Cr,Fe,V)₂Si₃O₁₂

Isothermal section at 600°C in NiO-V₂O₅-ZnO

L. L. Surat, V. D. Zhuravlev, A. A. Fotiev, Yu. A. Velikodnyi, Zh. Neorg. Khim., 41 [8] 1370-1372 (1996).

Vanadium recovery from LD converter slag

GTT-Technologies

Available online at www.sciencedirect.com

Trans. Nonferrous Met. Soc. China 24(2014) 2687-2694

Transactions of Nonferrous Metals Society of China

0/>

Extraction of vanadium from molten vanadium bearing slag by oxidation with pure oxygen in the presence of CaO

Table 1 Chemical composition of vanadium slag (mass fraction,

Wen-chen SONG ¹	² , Hong LI ^{1,2} , I	Fu-xing ZHU ³ , k	Kun LI ^{1,2} , Quan	ZHENG ^{1,2}
----------------------------	---	------------------------------	------------------------------	----------------------

 State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China;

2. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China;

 State Key Laboratory for Comprehensive Utilization of Vanadium and Titanium Resources, Pangang Group Research Institute Co., Ltd, Panzhihua 617000, China

[%] 0)				
FeO	SiO ₂	V_2O_3	TiO ₂	MnO
32.3	21.1	14.2	12.0	8.7
MgO	Al_2O_3		CaO	P ₂ O ₅
4.6	4.2		2.6	0.2

$m(CaO)/m(V_2O_5) = 0.15 \text{ to } 1$ Oxygen blown at T = 1450°C

Vanadium recovery from LD converter slag

GTT-Technologies

As the content of CaO increases, vanadium oxide will intensely interact with CaO to form more Ca-V-rich phases.

W.-C. Song, H. Li, F.-X. Zhu, K. Li, Q. Zheng, Trans. Nonferrous Met. Soc. China, 24 (2019), pp. 2687-2694.

Conclusions

- The liquid phase in all subsystems was evaluated using associate species model (two cations per species).
- All systems were assessed using experimental phase diagram information.
- *NiO*: 3 binary and 1 ternary systems were described.
- **SrO**: 10 binary and 2 ternary systems were described.
- V_2O_3 and V_2O_5 : 4 binary and 10 ternary systems were described.

Thanks for your attention

