

Application of thermochemistry for the prediction of slagging in coal fired boilers

<u>S. Guhl</u>, M. Klinger, R. Schimpke, C. Hommel, D. Vogt, P. Gehre, D. Kirschenmann, D. Safronov, B. Meyer, T. Brunne* *Lausitz Energie Kraftwerke AG

GTT Users' Meeting, 26th June 2019, Herzogenrath

TU Bergakademie Freiberg · Institut für Energieverfahrenstechnik und Chemieingenieurwesen · Professur für Energieverfahrenstechnik und thermische Rückstandsbehandlung · Reiche Zeche · Fuchsmühlenweg 9 · 09599 Freiberg · Telefon: 03731 39-4511 · Fax: 03731 39-4555 · www.iec.tu-freiberg.de

Introduction

R&D Project KORRISTENT

KORRISTENT

- Funding by BMWi (Federal Ministry for Economic Affairs and Energy) program "Anwendungsorientierte nichtnukleare F&E im 6. Energie-forschungsprogramm", Förderbereich "Kraftwerkstechnik sowie CO₂-Abscheidung und –speicherung"
- time: 01/01/2016 31/12/2019
- project ID: 03ET7066A

Cooperation partner

- TU Bergakademie Freiberg
 - Institute of Energy Process Engineering and Chemical Engineering (IEC)
 - Institute of Analytical Chemistry (IAC)
 - Institute of Ceramic, Glass and Construction Materials (IKGB)
- Lausitz Energie Kraftwerke AG

<u>Objective</u>

Development of solutions for reduced slagging of coal fired boilers especially for critical fuels

Introduction

Power station Boxberg

Issue

- 900 MW el., pulverised fuel firing systems, tower type boiler, **blend of RW/NO lignite**
- **Slagging of boiler wall**, sintered deposits at "Schott" (first horizontal tube bundle heat exchanger)
- Automated cleaning system (water cannons) keeps slagging manageable
- decreasing coal quality in future requires R&D

Work plan

- Analysing context between coal/ash properties, operation parameters and slagging based on process samples
 - Chemical-mineralogical characterization of proces samples (XRF, REM-EDX/WDX + EBSD, XRD, CT)
- 22.06.2015 04:01:09 90· 80 70-60-Kam 3 50-**40** 30-0 0 0 0 20-**0** 10-ᠾ᠐᠐ 0110
 - Fig: thermal image, LEAG
 - Development and application of ICP-OES with electro-thermal evaporation
 - experimental investigations (impedance spectroscopy, simulation of slagging in drop tube reactor)
- Modelling via thermochemistry and CFD
- providing applicable proposal for solution

Sample pool

Sample period	blend RW/NO	coal	fly ash	wet ash	deposits
May/June 2015	50/5070/30100/0	-	78	-	1 aluminosilicatic slagged
October 2015	70/30	42 shift samples	42 shift samples	42 shift samples	-
December 2015	60/40	-	-	-	1 Fe-dominated
July 2016	100/0	1 mixed sample	48	103	1 aluminosilicatic slagged (large slagged lumps) + 34 Fe-dominated
November 2016	0/100	1 mixed sample	-	-	-
August 2017	50/50	-	-	-	17 Fe-dominated
December 2016	100	coals and sediments from opencast mine RW			

4

Coal (set of 42 shift samples RW/NO 70/30)

Oxid	Average Ma%	Min. Ma%	Max. Ma%
SiO ₂	39,8	30,0	50,2
Al ₂ O ₃	14,7	7,7	20,1
Fe ₂ O ₃	12,2	7,6	15,3
CaO	12,2	7,7	15,8
MgO	2,5	1,8	3,2
SO ₃	16,2	10,4	22,5
Na ₂ O	0,2	0,2	0,2
K ₂ O	1,1	0,6	1,8
TiO ₂	1,1	0,7	1,5
Summe	100		

Mineral	Formel	Ma% coal wf
Quartz	SiO2	10-13
Kaolinite	Al ₂ (Si ₂ O ₅)(OH) ₄	5-11
Muscovite	KAl ₂ [(OH) ₂ AlSi ₃ O ₁₀]	0-9
Pyrite	FeS ₂	2-5
Pyrite Marcasite	FeS ₂	2-5 max. 0,5
Pyrite Marcasite Anatase	FeS ₂ FeS ₂ TiO ₂	2-5 max. 0,5 1-2

• Ash content 6–12 Ma.-% raw, B/A = 0,3–0,9

- Quartz, clay minerals and pyrite dominate
- Al, Si, 50% Fe, K, Ti → extraneous ash (70%), sediments
- Ca, Mg, 50% Fe \rightarrow inherent ash (30%), humates
- Flow temperature in red. atmosphere in average 1330°C

 \rightarrow highly fluctuating coal properties

 $\frac{Base}{Acid} = \frac{Na_2O + K_2O + CaO + MgO + Fe_2O_3}{SiO_2 + Al_2O_3 + TiO_2}$

Coal (set of 42 shift samples RW/NO 70/30)

- Sediments quartz and clay minerals (kaolinite, illite, muscovite) determine ash content, LHV and B/A
- quartz and kaolinite can be calculated via XRF-Data and stoichiometry (proven by direct measurement via XRD)

Fe-dominated deposit from boiler wall – SEM

- Fe₂O₃-Matrix (layers, formerly melt) with inclusions of alumosilicatic slag and quartz grains
- intermediate layers from fly ash (unspecific composition)

Fly ash

- Fe₂O₃ particles
- in large Fe-rich particles FeS-rich centre
- due to particle form formerly liquid

Wet ash and "Schlackestürze" (large slagged lumps)

Fig.: coarser wet ash

- relicts of quartz and clay minerals in recrystallized matrix (pyroxene (CaFeSi₂O₆ andCaMgSi₂O₆), anorthite (CaAl₂Si₂O₈), fayalite (Fe₂[SiO4]),
- FeS-inclutions
- same composition for alumosilicatic slagged lumps

Fig.: Schlackesturz

Mechanism of deposit/slag formation

- formation of FeO-FeS-melt from pyrite
- formation of initial layer on boiler wall, collection of fly ash particles
- mechanism 1: oxidizing of FeO-FeS-melt forms Fe₂O₃ (see SEM results of Fe-dominated deposits)
- mechanism 2: secondary reaction of FeO-FeS-melt with fly ash particles results in alumosilicatic melt with relicts of quartz and decomposed clay minerals (see SEM results of coarser wet ash and *Schlackestürze*)

 \rightarrow coarser wet ash fraction corresponds to cleaned slag/deposit from boiler wall \rightarrow definition of slag index: relative amount of wet ash fraction > 9.5 mm

Correlations between slagging and coal properties

 in general a mass balances (coal ash = wet ash + fly ash) is difficult to achieve (Representative samples? Frequency of sampling vs frequency of coal property change? Sampling point before coal distributor!)
→ moving average over two shifts

Correlations between slagging and coal properties

- Salgging ~ heating value
- Salgging ~ 1/ash content
- Salgging \sim 1/(quartz + clay minerals)

Correlations between slagging and coal properties

- Slagging ~ B/A
- B/A represents indirectly also other slagging sensitive parameters (ash, quartz+clay, LHV, pyrite)
- B/A connects ash composition with temperature of slag formation (T_{liq} =f(B/A))

$$\frac{\text{Base}}{\text{Acid}} = \frac{\text{Na}_2\text{O} + \text{K}_2\text{O} + \text{CaO} + \text{MgO} + \text{Fe}_2\text{O}_3}{\text{SiO}_2 + \text{Al}_2\text{O}_3 + \text{TiO}_2}$$

Basic calculations

- Database: Factsage 7.3 (FToxid; Gtox v2018)
- Calculations in SimuSage (adjustment of T for 100% slag)
- Input:
 - raw coal composition
 - air-fuel ratio = 0.9
 - no flue gas recirculation considered
- validation against AFT (hemisphere temperature at CO/CO_2 40/60 by vol.) and well established correlation of $T_{liq}=f(B/A)$

* modified from: J. Schmalfeld: Die Veredelung und Umwandlung von Kohle - Technologien und Projekte 1970-2000 in Deutschland. Hamburg: Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e.V.. 2008

Basic calculations

• correlation of $T_{liq}=f(B/A)$ in general visible for both databases

Basic calculations

- Reproducibility of AFT-temperatures for reducing atmosphere 80 K (according to ISO 540: 1995E)
- robust (simple) prediction of slagging as function of temperature and coal ash composition possible
- not considered: special role of pyrite, inert amounts of quartz and clay (mullite)

Extended Model

- FactSage 7.2, FactPS, Ftoxid, FTmisc
- Input data:
 - fuel analysis of 42 coal samples (LEAG-shift data: ultimate analysis, disulphide, XRF of ash)
 - XRF of wet ash fraction > 9.5 mm (average)
- high degree of freedom (air-fuel ratio, inert components, T range):
 - modeling FeO-FeS-melt
 - reduce number of free parameters (T, reactive SiO₂-content)
 - apply model on 42 coal samples

Thermochemistry

18

1. calculation: pyrite induced melts

Input streams:

- C, H, O, N, S and water of respective coal sample
- Fe content of the ash (Fe₂O₃)
- Combustion air

Parameter variation:

- Air ratio $\lambda_1 = 0,2; 0,4; 0,6; 0,8; 0,9$
- Temperature: T = 700 1300 °C
- variation of T and λ_1 to minimize the difference between the amounts of
 - disulphide in the coal sample and
 - sulphur in the resulting liquid phase

Result:

T and λ of FeO-FeS-melt formation (ca. 950-1050 °C, λ = 0,2-0,3)

Thermochemistry

19

Auxiliary calculation

1. melting temperature of the average slagged wet ash (>9.5mm)

Input:

- C, H, O, N, S and water of the average coal sample
- Ash composition and content of the coarse wet ash fraction > 9,5 mm
- Combustion air $\lambda_{AC1} = 0.9$ (burner belt section)
- Variation of temperature T = 700 1500 °C for 100% slag
- Result: melting temperature of the average slagged wet ash 1153°C

Thermochemistry

Auxiliary calculation

2. reactive SiO₂ content

Input:

- C, H, O, N, S and water of the average coal sample
- ash composition of average coal sample
- Combustion air $\lambda_{AC2} = 0.9$
- Temperature: melting temperature from 1. auxiliary calculation
- Variation of the reactive SiO2 amount to minimize the difference between the composition of the coarse wet ash fraction and the liquid phase

Result: reactive SiO₂ content of 43 wt. %

Thermochemistry

22

2. calculation: wet ash/slag

Input:

- 42 shift coal samples
- gaseous and liquid phases from 1. calculation
- Remaining ash components of coal samples (excl. Fe)
- reactive amountSiO₂ content based on 2. auxiliary calculation
- Combustion air $\lambda_{1+2} = 0.9$
- Temperature from 1. auxiliary calculation
- Result: amount of slag phase phase determines slagging tendency

Calculated slag phase vs Slagging index and Slag incidents

- relations between coal properties and slagging extracted (slagging=f(LHV, quartz, clay, pyrite)
- B/A allows for robust estimation of slagging propensity, whereas slagging ~ B/A within investigated range of composition
- application thermochemistry allows prediction of T-dependent slag formation
- further improvement of thermochemical model by
 - analysis of inert components (quartz, clay in wet ash and fly ash via XRD)
 - improved estimation of temperature (as function of LHV and boiler load)
- practical application of model (or key figure):
 - simplification of model (have to be based on measurable coal and operational parameters)
 - implementation of ETV-ICP-OES as online measurement (multielement analysis, indirectly detection of quartz, clay minerals and pyrite)

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

Contact:

TU Bergakademie Freiberg

Dr.-Ing. Stefan Guhl

Institute of Energy Process Engineering and Chemical Engineering Fuchsmühlenweg 9 D-09599 Freiberg

Tel: +49 3731 39 4485 E-Mail: stefan.guhl@iec.tu-freiberg.de