Thermal Analysis and Thermodynamic Calculations in Rare-Earth Oxide Based Systems

Detlef Klimm

Leibniz-Institut für Kristallzüchtung (IKZ)

Max-Born-Str. 2, 12489 Berlin, Germany, detlef.klimm@ikz-berlin.de

Sesquioxides RE₂O₃ (or Me₂O₃, respectively) of the rare-earth elements from lanthanum to lutetium, plus scandium, yttrium, aluminum, and gallium, are forming alone or among each other a wide variety of solid phases. For the simple oxides of one metal, the thermodynamically stable phases include A, B, C, H, X phases of the RE₂O₃ including Y₂O₃ and Sc₂O₃ [1], corundum (α -Al₂O₃), and β -Ga₂O₃ [2], see also the Figure below. Among the pseudobinary phases of 2 metals especially some garnets Me₃Me'₅O₁₂ and perovskites (P phases) MeMe'O₃ are technically relevant, e.g., as laser hosts (Y₃Al₅O₁₂ = "YAG") or substrates for "strain engineering" of ferroelectrics (REScO₃, [4]).

Liquidus temperatures in the relevant systems are often high, typically beyond 2300 K and more. This makes thermodynamic measurements, e.g. by DTA, a challenge. Fortunately, a reliable compilation of thermodynamic date for the RE₂O₃ (including Sc₂O₃ and Y₂O₃) is available [1]. Data for many pseudobinary solids and for melts in the RE₂O₃–Al₂O₃ systems, which are based on the paper by Wu & Pelton [5], are already included in the FactSage databases.

The talk reports some investigations on garnets that complement the paper [5], and on other RE_2O_3 based systems. It turns out that at very high temperatures some simple thermodynamic rules give often a satisfactory description for phases.

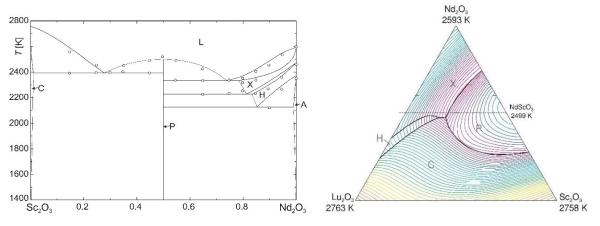


Figure left: Experimental [4] data points for the Nd_2O_3 - Sc_2O_3 system together with a FactSage 7.1 thermodynamic assessment. Right: Liquidus surface in the Nd_2O_3 - Lu_2O_3 - Sc_2O_3 system with 10 K isotherms and labels for congruent melting points. Reprinted with permission from [6].

Literature:

[1] M. Zinkevich, Thermodynamics of Rare Earth Sesquioxides, Prog. Mater. Sci. 52 (2007) 597–647.

[2] S. Geller, Crystal structure of β -Ga₂O₃, J. Chem. Phys. 33 (1966) 676–684.

[3] J. H. Haeni, et al., Room-Temperature Ferroelectricity in Strained SrTiO₃, Nature. 430 (2004) 758–761.

[4] J.-M. Badie, Phases et transitions de phases à haute température dans les systèmes Sc_2O_3 -Ln₂O₃ (Ln = lanthanide et yttrium), Rev. Int. Hautes Temp. Réfractaires 15 (1978) 183–199 (in French).

[5] P. Wu, A.D. Pelton, Coupled Thermodynamic-Phase Diagram Assessment of the Rare Earth Oxide-Aluminium Oxide Binary Systems, J. Alloy. Comp. 179 (1992) 259–287.

[6] T. Hirsch, et al., Investigation of the Nd_2O_3 -Lu₂O₃-Sc₂O₃ phase diagram for the preparation of perovskite-type mixed crystals $NdLu_{1-x}Sc_xO_3$, J. Cryst. Growth. 505 (2018) 38–43.