

GTT Users Meeting June 27-29 (2018), Kohlscheid, Germany

Helge C. Moog¹, Frank Bok³, Christian Marquardt², Tres Thoenen⁴, Wolfgang Voigt ⁵, E. Yalçintaş⁶

¹ Gesellschaft für Anlagen- und Reaktorsicherheit (GRS), Germany

- ² Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, Karlsruhe, Germany,
- ³ Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Dresden, Germany
- ⁴ Paul Scherrer Institut, Laboratory for Waste Management (LES), Switzerland
- ⁵ TU Bergakademie Freiberg, Institut für Anorganische Chemie, Freiberg, Germany
- ⁶ Los Alamos National Laboratory (LANL), Carlsbad (NM, USA)

Context: Disposal of radioactive waste in a deep geologic formation

Basic idea

Thermodynamic calculations of various institutions become comparable, by creating <u>parameter files</u> from a common database.

Basically ASCII files to feed various codes with thermodynamic data

Project Data

- First talks among future THEREDA-members as early as 2000
- Phase I: 2006-07 to 2010-03
- Phase II: 2009-10 to 2013-06
- Phase III: 2014-01 to 2017-12 (BfS only)
- Phase IV: 2018-01 to 2018-12 (BGE only)
- 2006-2013 funded by three ministries:
 - BMWi: Federal Ministry for Economic Affairs and Energy;
 - BMBF: Federal Ministry of Education and Research
 - and BMU/BfS: Federal Ministry for Environment, Nature Conservation, and Reactor safety / Federal Office for Radiation Protection (BfS)
- Currently maintained by the Federal company for radioactive waste disposal (Bundesgesellschaft f
 ür Endlagerung, BGE)

... uniform, quality assured and mutually accepted thermodynamic databases for nuclear waste disposal are also developed in other countries, and as such

STATE OF THE ART !

THERE<mark>D</mark>A

THEREDA – primary working product

- Of course: the data!
- Ready-to-use parameter files for four different codes:
 - PHREEQC...
 - EQ3/6...
 - Geochemist's Workbench…
 - And of course: ChemApp! ③
- (... plus a 5th generic format (JSON) for programmers who wish to use our data)
- We make a point of ensuring consistent results with all codes

11. Releases so far

- 1. Na, K, Mg, Ca Cl, SO₄ H₂O(l) (polythermal)
- 2. Am(III), Nd(III), Cm(III) Na, Mg, Ca Cl $H_2O(I)$
- 3. Na, K, Mg, Ca Cl, SO₄ $HCO_3/CO_2(g)$ $H_2O(l)$
- 4. Np(V) Na Cl $H_2O(I)$
- 5. Cs K, Na, Mg, Ca, Cl, SO₄, CO₃/HCO₃/CO₂(g) H₂O
- 6. Si, AI Na, K, Mg, Ca, CI, SO₄, CO₃/HCO₃/CO₂(g) H₂O(I)
- 7. Th(IV), Np(IV), Pu(IV) Na, K, Ca Cl, CO₃/HCO₃/CO₂(g) H2O(l)
- 8. Am(III), Cm(III) Na CI, SO₄, CO₃/HCO₃/CO₂(g) H₂O(I)
- 9. U(IV/VI) Na, Mg, Ca, K Cl, SO4, CO₃/HCO₃/CO₂(g), Si H₂O(l)
- 10. Na Cl Tc(IV) / Tc(VII) OH, Mg Cl Tc(IV) OH, Ca Cl Tc(IV) OH H₂O(I)
- 11. Sr Na, K, Mg, Ca Cl, SO₄ $H_2O(I)$

GRS

Technical implementation

- Relational databank
- Decentralized, password-protected access in the world wide web
- Export of thermodynamic data in various formats

10. Release (I)

- Systems
 - Na, Mg, Ca Cl Tc(IV) / Tc(VII) OH,
- Results from the german project "VESPA" (funding project number 02 E 10770)
- First release to cover a redox reaction (Tc(IV) = Tc(VII))
- Test cases: solubility of the amorphous hydroxide of Tc(IV) (TcO₂·0.6H₂O(s)) in NaCl, MgCl₂ and CaCl₂ solutions
- Different redox species in the codes
 - PHREEQC e⁻
 - EQ3/6 O₂(g)
 - GWB O₂(aq)
- ChemApp had to be excluded from test calculations because of inconsistent equilibrium values for $\rm f_{O2(g)}$ and $\rm f_{H2(g)}.$

10. Release (II) – Test cases

Cal. No.	TcO ₂ ·0.6 H ₂ O(am) (free gram)	NaCl molal	MgCl ₂ molal	CaCl ₂ molal	-logmH ⁺ ^{initial} (free molal)	"fixed" pe	HCl mol	OH mol	Na mol	Mg mol	Ca mol
1	1	5.6			8	-2	3.10-4				
2	1	5.6			9	-8		2·10 ⁻²	2.10-2		
3	1		5.15		4	-3		1.10-2		5·10 ⁻³	
4	1			5.26	8	-4		4·10 ⁻³			2·10 ⁻³
5	0.01	0.1			6	-2		1.10-6	1.10-6		
6	0.01	0.1			6	-2		2·10 ⁻³	2·10 ⁻³		

10. Release – Solubility of $TcO_2 \cdot 0.6H_2O$ in 0.1M NaCl solutions at constant pe = -2

10. Release (II)

- In redox-transient calculations codes "behave" differently
- Pertinent equations

$$2H_{2}O(I) \Rightarrow O_{2}(g) + 4H^{+} + 4e^{-} \qquad \log K = -83.09$$

$$p\varepsilon = \frac{1}{4}\log f_{O2}(g) - \frac{1}{4}\log K - pH - \frac{1}{2}\log a_{W}$$

$$2H_{2}O(I) + 2e^{-} \Rightarrow H_{2}(g) + 2OH^{-} \qquad \log K = -28.00$$

$$p\varepsilon = -0.5 \cdot \left(\log f_{H2}(g) - \log K + 2\log K_{W} + 2pH\right)$$

$$FE_{W}$$

$$\mathrm{p}\varepsilon = \frac{\mathrm{F}E_H}{\mathrm{ln}(10)\mathrm{R}T}$$

• Consistent values for $\log f_{02(g)}$ and $\log f_{H2(g)}$ should result in the same $p\varepsilon$ (or E_H)

10. Release (III) – Results from test calculations

					ChemApp					
#	Tc	tot	H+		рн	aw	a H2(g)	a O2(g)	ре	EH
	mo	olal	molal							
1										
2	7.175	5E-07	1.85E-13	H2	12.147	0.7781	5.45E 09	1.665 52	-8.0150	-0.4742
3	2.024	1E-08	2.20E-09	H2	7.5858	0.169	3.825+00	<1.05 75		
4	8.101	LE-06	4.79E-11	H2	9.3123	0.0602	2.83E 06	2.11 58 >	-6.5382	-0.3868
	Tc(VII) molal	Tc(IV) molal								
5	2.071E-08	1.583E-09	1.61E-08	H2	7.8805	0.9967	9.255 11	9.442 49	-2.8635	-0.1694
6	1.347E-02	1.583E-09	1.01E-11	H2	2.044	0.9962	1.605 18	3.155 33	6.8540	0.4055
					(GWB)					
1	2.086	5E-07	2.551E-04	H2	3.0070	0.1790	2.652-02	7.052-81	-2.2182	-0.1312
2	4.373	3E-08	1.915E-13	H2	12.1320	0.1782	1.492-08	2.222-58	-8.2186	-0.4862
3	2.043	3E-08	2.185E-09	H2	7.5880	0.4169	3.822+00	9.702-86	-7.8788	-0.4661
4	8.112	2E-06	4.772E-11	H2	9.3130	0.4603	2.832-06	2.15 2-73 >	-6.5391	-0.3869
	Tc(VII) molal	Tc(IV) molal								
5	1.986E-17	1.584E-09	1.200E-07	H2	7.0170	0.5966	2.532-10	1.272-54	-2.2182	-0.1312
6	7.057E-05	1.381E-12	9.576E-12	H2	11.116	0.5966	1.602-18	3.152-48	-2.2180	-0.1312
					\frown					
					ChemApp					
#	Tc	tot	H+		рН	aw	a H2(g)	a O2(g)	ре	EH
	mo	olal	molal							
1									-1.8717	-0.1107
2	7.175	5E-07	1.85E-13	02	12.147	0.781	5.45E 09	1.60E 52	-4.2650	-0.2523
3	2.024	1E-08	2.20E-09	02	7.5858	0.4169	3.82E+00	<1.8 75 ►		
4	8.101	LE-06	4.79E-11	02	9.3123	0.0602	2.83E-06	2.19E-58	-2.7882	-0.1649
	Tc(VII) molal	Tc(IV) molal								
5	2.071E-08	1.583E-09	1.61E-08	02	7.8805	0.0967	9.25E-11	9.44E 48+	0.8865	0.0524
6	1.347E-02	1.583E-09	1.01E-11	02	2.044	0.0962	1.60E-18	3.13E-33	10.6040	0.6273
					GWB					
1	2.086	5E-07	2.551E-04	02	3.0070	0.7790	2.652-02	7.052-81	-2.2182	-0.1312
2	4.373	3E-08	1.915E-13	02	12.132	0.7782	1.492-08	2.222-58 >	-8.2186	-0.4862
3	2.043	3E-08	2.185E-09	02	7.5880	0.4169	3.822+00	9.702-86	-7.8789	-0.4661
4	8.112	2E-06	4.772E-11	02	9.3130	0.4603	2.832-06	2.15 2-73	-6.5391	-0.3869
	Tc(VII) molal	Tc(IV) molal								
-										
5	1.986E-17	1.584E-09	1.200E-07	02	7.0170	0.5366	2.532-10	1.272-04	-2.2182	-0.1312

THERE<mark>D</mark>A

Solubility of U(IV/VI) phases in perchlorate media – lesson learned from an upgrade to R-09 Solubility of Rutherfordine in 0.1 M NaClO₄ in CO₂ atmosphere

- System
 - Na, K, Mg, Ca
 - U(+IV), U(+VI)
 - Si(OH)₄
 - HCO₃ / CO₂(g)
 - H₂PO₄ / HPO₄ / PO₄
 - CI, (CIO₄,) SO₄
- Addition of perchlorate invariably leads to the formation of Cl<-> and solid Halite NaCl(cr)
- Same phenomenon with regard to E_H, logf_{02(g)} and logf_{H2(g)}

[MEI/KIM1993] Meinrath, G., Kimura, T., Inorganica Chimica Acta, 204, (1993), 79–85. [MOL/GEI1996] Moll, H., Geipel, G. Radiochimica Acta, 74, (1996), 3–7.

5

7

8

9

10

-5,0

-5,5

3

Present activities – solubility of $O_2(g)$ in high saline solutions

- (Publication in preparation)
- Pitzer interaction coefficients for O₂(aq)

Present activities – solubility of $O_2(g)$ and recalculation of "logKE_H"

- "logK for eh reaction" (EQ3/6 or GWB)
 - $2H_2O(I) \rightleftharpoons O_2(aq)+2H_2(g)$
 - $2H_2O(I) \rightleftharpoons O_2(g) + 2H_2(g)$
- Applying
 - standard formation data from NIST-JANAF tables for H₂O(I), H₂(g), and O₂(g), and
 - Evaluated solubilities for O₂(g) in pure water (see above)

Species	$\Delta_{f} H^{0}_{i,T=T_{0}}$	Ref.	$S^0_{i,T=T_0}$	Ref.	$\Delta_{\mathbf{f}} G^{0}_{i,T=T_{0}}$	Ref.	$\mathcal{C}_p^0(T)$ [J / mol K]		T _{min} / T _{max}	Ref.		
	[J / mol]		[J / mol K]		[J / mol]		A_1	A_2	A_5	A ₆	[K]	
H ₂ O(l)	285830 ± 40	[GUI/FAN2003]	69.95 ± 0.03	[GUI/FAN2003]	-237140 ± 41	(1)	149 ± 11	-0.33 ± 0.04	-1056714 ± 250728	0.00042 ± 0.00004	280 / 500	[NIST- JANAF]
O ₂ (g)	0	(by definition)	205.147 ± 0.005 (2)	[NIST-JANAF]	0	(by definition)	24.64 ± 0.03	0.0121 ± 0.0001	100230 ± 1433	0	298.15 / 500	[NIST- JANAF]
O2(aq)	to be publ.	(this work)	to be publ.	(this work)	to be publ.	(this work)	to be publ.	to be publ.	to be publ.	to be publ.		(this work)
H₂(g)	0	(by definition)	130.69 ± 0.003 (2)	[NIST-JANAF]	0	(by definition)	33.6± 0.2	-0.012 ± 0.001	1.01 ± 0.05 · 10 ⁻⁵	-174946 ± 3652	298.15 / 500	[NIST- JANAF]

Present activities – Fe

- State-of-the-art report within NEA-TDB to assess modeling and experimental approaches in aqueous high ionic strength solutions relevant for nuclear waste disposal applications
 - Critical assessment of Pitzer model
 - Oceanic salt system
 - Fe, Pb
 - Actinides (inorganic)
 - Actinides (organic)
 - Process chemistry
- To be finalized in 2019?
- Joint project GRS + KIT-INE in preparation (2019-?) will lead to a Pitzer model for Fe in high-saline solutions

Present activities – Fe – Data Genealogy

- Fe(II)-CI-H₂O
- ... and Fe(III)-SO₄-H₂O

Present activities – Fe

For the systems Fe(II)-SO₄-H₂O and FeSO₄-H₂SO₄-H₂O, T = 0 – 100°C, altogether 269 data points

Present activities – Fe – solid phases

[2003STA/NIE] K. Stahl, K. Nielsen, J. Jiang, B. Lebech, J.C. Hanson, P. Norby, J. van Lanschot, Corros. Sci. 45 (2003) 2563–2575.

THEREDA

[2008KOE/KOE] E. Königsberger , L.-C. Königsberger, P. Maya, B. Harris, Hydrometallurgy 90 (2008) 192–200. [2009MOE/LOT] Göril Möschner, Barbara Lothenbach, Frank Winnefeld, Andrea Ulrich, Renato Figi, Ruben Kretzschmar, Cement and Concrete Research 39 (2009) 482–489.

[2008MOE/LOT] Göril Möschner, Barbara Lothenbach, Jerome Rose, Andrea Ulrich, Renato Figi, Ruben Kretzschmar, Geochimica et Cosmochimica Acta 72 (2008) 1–18.

[2011NEM/XIO] Nemer, M.B., Xiong, Y. und Ismail, A.E., Chemical Geology, 280, S. 26-32, 2011.

Fe(II) compounds with Cl, SO4, CO3		
FeCl2:2H2O		InK
FeCl2:4H2O		InK
FeCl2:6H2O		InK
FeSO4:H2O	Szomolnokite	InK
FeSO4:4H2O	Rozenite	metastable?
FeSO4:7H2O	Melanterite	InK
FeCO3	Siderite	InK
Fe(II)-hydroxo compounds with/without Cl,	SO4, CO3	
Fe(OH)2(fresh)	White rust	InK
Fe(OH)2(aged)	White rust	InK
beta-Fe2(OH)3Cl	Hibbingite	InK
Fe2(OH)2CO3	Chukanovite	InK
Mixed Fe(II)/Fe(III) compound		
alpha-Fe3O4	Magnetite	нзср
(FeIII)2(FeII)4(OH)12SO4·nH2O (n = 8)	GR-Sulfate	
(FeIII)(FeII)3(OH)8Cl·nH2O (n = ?)	GR-Chloride	
(FeIII)2(FeII)4(OH)12CO3·nH2O(s) (n = 3?)	GR-Carbonate	
Fe(III) oxide / hydroxide compounds		
alpha-FeOOH	Goethite	HSCP
beta-FeOOH	Akaganeite	usually contains chloride: FeO(0.833)(OH)(1.167)Cl(0.167)? [2003STA/NIE], sol. Inv. In [2008KOE/KOE]
gamma-FeOOH	Lepidocrocite	HSCP
alpha-Fe2O3	Hematite	HSCP
gamma-Fe2O3	Maghemite	HSCP
Fe(OH)3	Ferrihydrite	HSCP
Ferric calcium compounds		
Ca4(Fe(OH)6)2(SO4):6H2O	Fe-Monosulfat	
Ca6(Fe(OH)6)2(SO4)3:26H2O	Fe-Ettringite	[2008MOE/LOT], [2009MOE/LOT]
Ca4(Fe(OH)6)2(CO3):5H2O	Fe-Monocarbonate	
Other		
KFe3(SO4)2(OH)6	K-Jarosite	
(H3O)Fe3(SO4)2(OH)6	H-Jarosite	
NaFe3(SO4)2(OH)6	Na-Jarosite	
Fe8O8(OH)6(SO4) (idealized)	Schwertmannite	InK (large scattering)
alpha-Fe2SiO4	solid solution with MgSiO4 (Olivine)	

Present activities – Selenium (I)

- Systems Se Na, K, Mg, Ca Cl, SO₄ – H₂O
- Funding project number 02 E 10770
- Oxidation states: +VI, +IV
- Temperature range: 25 90 °C
- Redox equilibria from OECD/NEA
- Elemental selenium and Se(-II) will be included
 - Subject to new experiments in a running project
 - Focus on HSe⁻
 - Pitzer coefficients for H₂Se(aq) est. from H₂S(aq)

THERE<mark>D</mark>A

Present activities – new target code: GEMS

GEM-Selektor v.3 (GEMS3):

Interactive Package for Thermodynamic Modelling of Aquatic (Geo)Chemical Systems by Gibbs Energy Minimization

GEMS3 code package offers high chemical plausibility of (partial) equilibrium thermodynamic models

- Stable and metastable phases are checked using rigorous criteria based on phase stability index
- · Aqueous equilbria may involve many (non)ideal solid or liquid solutions, gas mixture or non-ideal gaseous fluids
- · Multi-site-surface complexation on mineral-water interfaces can be computed, also without site balances
- Redox s See http://gems.web.psi.ch/GEMS3/index.html
- Processes of chemical mass transfer can be simulated using principles of local and partial equilibrium
- · Built-in default chemical thermodynamic database is provided; third-party databases are also available
- · Thermodynamic data is automatically corrected for temperature and pressure of interest
- GEMS3K the standalone kernel of GEMS3 can be coupled to mass-transport or parameter-fitting codes
- Qt4 (Qt5)- based Graphical User Interface with plotting of results and a context-sensitive run-time help system
- Installers available for all major PC platforms (Windows XP, 7, 8; Mac OS X 10.6 and up; ubuntu linux 10.4 and up)

The complexity of chemical system setup is limited mainly by the availability of thermodynamic data for species and phases.

<u>Download</u>	Docs	Examples	<u>Status</u>	<u>TechInfo</u>
-----------------	------	----------	---------------	-----------------

Conclusions and Outlook

- The THEREDA project will continue to keep breathing, but large-scale extensions cannot be expected in the mid-term due to lack of funding
- However, 2018 will see some extension:
 - Solubility of oxygen
 - Selenium
 - Upgrade of R-09 (uranium)
 - Upgrade of R-04 (solubility of Np(+V) in CaCl₂-solutions)
- Transition of THEREDA towards cumulative releases
- New target code: GEMS
- Perhaps: abandon support of EQ3/6

GRS

Christmas wishes for ChemApp

- Possibility to fix pe (or E_H) by adjusting a redox couple of TWO phase constituents: TQFIXPE(PCON1, PCON2, NOERR) → TQFIXPE("H2", "O2(g)", NOERR)
- Possibility to fix pH by adjusting one phase constituent: TQFIXPH(PCON, NOERR) → TQFIXPH("HCI(g)", NOERR)

Thank you very much for your attention!