

**Business from technology** 

## Comparing Mechanistic and Thermochemical Modelling of Reaction Rate-Controlled Multiphase Systems

Simulation of the Titanium(IV)Chloride Oxidizer

Pertti Koukkari 20<sup>th</sup> Annual Users' Meeting GTT Technologies 28.6. 2018

## **CONTENTS OF PRESENTATION**

- 1. Motivation to calculate rate-controlled systems
- 2. Coupling of reaction matrix with stoichiometric formula matrix
- 3. Case example:  $TiO_2$  nanoparticle formation by  $TiCl_4$  oxidation
  - detailed kinetic mechanism (DKM, West & al. 2007-2009)
  - constrained Gibbs energy (CFE, by Koukkari & al. 1993  $\Rightarrow$ )
  - comparison with experiment
- 4. Application in reactor simulation
- 5. Conclusions



### ΜοτινατιοΝ

- Practical systems seldom reach complete equilibrium due to (slow) reaction kinetics
- The reaction rate parameters of many suggested complex mechanisms are often less well known
- mechanistic (DKM) modeling is a nearly impossible challenge for complex heterogeneous systems with many phases

□ ⇒ it would be advantageous to include reaction rate restrictions to Gibbs energy minimization to allow for calculations of kinetically constrained reactors

### **MODELLING OF DYNAMIC MULTICOMPONENT SYSTEMS**

 $\Box$  Solve time course for amount of moles vs. extents of reaction ( $\xi$ ):

 $d\mathbf{n} = \mathbf{v}d\mathbf{\xi}$  ;  $\mathbf{\xi} = \mathbf{\xi}(t)$ 

- □ In DKM, a group of ODE's used and solved as a numerical initial value problem; parameters for all reaction rates required (e.g. CANTERA)
- **u** when solving min(G) for global minimum, the  $\xi$ 's are independent variables, but components are conserved by mass balance constraints
- □ In constrained min(*G*) [CFE] the  $\xi = \xi(t)$  are solved from reaction rate equations to be used as additional conserved quantities
- □  $\Rightarrow$  in CFE differential-algebraic (DA) approach is used, rate parameters applied for selected reactions only and a 'timewise' sequential min(G) is calculated (e.g. ChemSheet/ChemApp)

### **COUPLING OF REACTION AND CONSERVATION MATRICES**

Example of 2 reactions:

$$\alpha_1 + 2\alpha_2 \stackrel{r_1}{\leftrightarrow} \alpha_3$$
$$\alpha_2 + \alpha_3 \stackrel{r_2}{\leftrightarrow} \alpha_4$$

Constraints in the 2-component system:

 $\checkmark$  2 components ( $\alpha_1, \alpha_2$ )

 $\checkmark$  4 species  $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 

 $\checkmark$  2 reactions  $(r_1, r_2)$ 



✓ includes constraints for mass balances and reactions

 $\Rightarrow$  C(v)

 $\checkmark$  applies extents of reaction as additional constraints in *min*(G)

✓ number of constrained reactions can be chosen  $(0 \le r \le R)$ 

<sup>\*)</sup> Blomberg & Koukkari, Comput. Chem. Eng. 35 (2011) 1238-1251. Pajarre & al., Chem. Eng.Sci. 146 (2016) 244-258. Koukkari & Paiva, Chem.Eng.Sci 179 (2018), 227-242.

### **EXAMPLE: FLAME REACTOR FOR TICI<sub>4</sub> OXIDATION**



 TiO<sub>2</sub> is formed as a nanoparticle suspension – used as the white pigment (> 5 Mt/yr)
exothermic main reaction compensated by endothermic side reactions (chlorine dissociation, Ti<sub>x</sub>O<sub>y</sub>Cl<sub>z</sub> formation) and efficient reactor cooling

### SYSTEM FOR DKM CALCULATIONS (TICI<sub>4</sub> OXIDATION) WEST 2007

| <u>System</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Overall reaction</b>                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 0<br>0 <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $TiCl_4 + O_2 \rightarrow TiO_2(nanoparticles) + 2Cl_2$                                                                                                                                                                                                                  |  |  |  |  |  |  |
| $\begin{array}{c} \text{U}_{3} \\ \text{CI} \\ \text{CI}_{2} \\ \text{Gas} \\ \text{CIO} \\ \text{CIOO} \\ \text{CIOO} \\ \text{CIOO} \\ \text{CI2O} \\ \text{Ti} \\ \text{TiCI} \\ \text{TiCI}_{2} \\ \text{TiCI}_{3} \\ \text{TiCI}_{4} \\ \text{TiOCI}_{2} \\ \text{TiO2CI}_{2} \\ \text{TiO2CI}_{2} \\ \text{TiO2CI}_{3} \\ \text{TiO2CI}_{2} \\ \text{CIOCI}_{3} \\ \text{Ti2O2CI}_{3} \\ \text{Ti2O2CI}_{3} \\ \text{Ti2O2CI}_{3} \\ \text{Ti2O2CI}_{5} \\ \text{Ti2O3CI}_{2} \\ \text{Ti}_{2} \\ \text{O2CI}_{5} \\ \text{TiO2CI}_{5} \\ \text{TiO2CI}_{5} \\ \text{TiO2CI}_{5} \\ \text{TiO2CI}_{5} \\ \text{TiO2CI}_{5} \\ \text{TiO2CI}_{5} \\ \text{TiO2CI}_{6} \\ \end{array}$ | <section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header> |  |  |  |  |  |  |
| TiO <sub>2</sub> (s)Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2007                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |

| Table 6.2: Re | action mecha | nism equations. |
|---------------|--------------|-----------------|
|---------------|--------------|-----------------|

| No     | Reaction                                                                                   | ΔH <sup>o</sup> <sub>200</sub> <sup>g</sup> | AB                    | n       | Ea   | Ref. |
|--------|--------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------|---------|------|------|
| Ther   | mal Decomposition                                                                          | 2908                                        |                       |         |      |      |
| R1     | $T_iCL + M \Rightarrow T_iCL + Cl + M$                                                     | 387                                         | 5.40×10 <sup>18</sup> | 0       | 336  | 10   |
| R2     | $T_iCl_2 + M \Longrightarrow T_iCl_2 + Cl + M$                                             | 422                                         | $7.70 \times 10^{18}$ | 0       | 387  | 10   |
| R3     | $T_iCl_2 + M \Rightarrow T_iCl + Cl + M$                                                   | 507                                         | 3.20×10 <sup>17</sup> | ő       | 511  | 11   |
| R4     | $T_1 + CI \Rightarrow T_1CI$                                                               | -405                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R5     | $TiCl_2 + Cl_2 \Rightarrow TiCl_4$                                                         | -567                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R6     | $TiCl + Cl_2 \rightleftharpoons TiCl_3$                                                    | -687                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| Abst   | raction and Disproportionation                                                             |                                             |                       |         |      |      |
| R7     | $TiCl_3 + Cl_2 \Rightarrow TiCl_4 + Cl$                                                    | -144                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R8     | $T_1Cl_2 + Cl_2 \Rightarrow T_1Cl_3 + Cl$                                                  | -180                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R9     | $TiCl + Cl_2 \rightleftharpoons TiCl_2 + Cl$                                               | -265                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R10    | $T_1 + Cl_2 \rightleftharpoons T_1Cl + Cl$                                                 | -162                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R11    | $TiCl_4 + TiCl \rightleftharpoons TiCl_3 + TiCl_2$                                         | -121                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R12    | $TiCl_4 + Ti \rightleftharpoons TiCl_3 + TiCl_3$                                           | -18                                         | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R13    | $TiCl_2 + TiCl \rightleftharpoons TiCl_3 + Ti$                                             | -17                                         | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R14    | $2 \text{ TiCl} \Rightarrow \text{TiCl}_2 + \text{Ti}$                                     | -103                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R15    | $Cl_2 + TiO_2Cl_2 \rightleftharpoons Cl + TiO_2Cl_3$                                       | -95                                         | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R16    | $Cl_2 + Ti_2O_2Cl_3 \rightleftharpoons Cl + Ti_2O_2Cl_4$                                   | -174                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R17    | $2 \operatorname{TiCl}_3 \rightleftharpoons \operatorname{TiCl}_2 + \operatorname{TiCl}_4$ | 35                                          | 9.60×10 <sup>12</sup> | 0       | 35   | 10 d |
| R18    | $TiCl_3 + TiCl \Rightarrow 2 TiCl_2$                                                       | -85                                         | $1.00 \times 10^{13}$ | 0       | 0    |      |
| Oxid   | ation                                                                                      |                                             |                       |         |      |      |
| R19    | $T_1Cl_3 + O_2 \rightleftharpoons T_1O_2Cl_3$                                              | -277                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R20    | $TiOCl_3 + ClO \Rightarrow TiO_2Cl_3 + Cl$                                                 | -115                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R21    | $T_1O_2Cl_3 + T_1Cl_3 \rightleftharpoons 2 T_1OCl_3$                                       | -7                                          | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R22    | $TiOCl_2 + Cl \Rightarrow TiOCl_3$                                                         | -162                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R23    | $TiOCl_3 + O \Rightarrow TiO_2Cl_3$                                                        | -384                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R24    | $T_1O_2Cl_2 + Cl \Rightarrow T_1O_2Cl_3$                                                   | -337                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R25    | $TiO_2Cl_2 + Cl \Rightarrow TiCl_3 + O_2$                                                  | -61                                         | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R26    | $TiOCl_3 + O \rightleftharpoons TiCl_3 + O_2$                                              | -108                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R27    | $TiCl_2 + O_2 \rightleftharpoons TiOCl_2 + O$                                              | -152                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R28    | $T_iO_2Cl_2 + O \Rightarrow T_iOCl_2 + O_2$                                                | -289                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R29    | $TiCl_3 + ClO \Rightarrow TiCl_4 + O$                                                      | -118                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R30    | $TiCl_2 + ClO \Rightarrow TiCl_3 + O$                                                      | -153                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R31    | $TiCl + ClO \Rightarrow TiCl_2 + O$                                                        | -239                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R32    | $T_i + CIO \Rightarrow T_iCI + O$                                                          | -136                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R33    | $TiCl_3 + O \Rightarrow TiOCl_2 + Cl$                                                      | -228                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R34    | $TiCl_3 + Cl_2O \Rightarrow TiCl_4 + ClO$                                                  | -243                                        | 1.00×1013             | 0       | 0    |      |
| R35    | $T_1Cl_3 + ClO \Rightarrow T_1OCl_3 + Cl$                                                  | -122                                        | $1.00 \times 10^{13}$ | 0       | 0    |      |
| R36    | $TiO_2Cl_2 + Cl \Rightarrow TiOCl_2 + ClO$                                                 | -60                                         | $1.00 \times 10^{13}$ | 0       | 0    |      |
| a kl r | nol <sup>-1</sup> <sup>b</sup> cm <sup>3</sup> mol <sup>-1</sup> s <sup>-1</sup>           | c cm <sup>6</sup> mol                       | -2 s-1                | d estin | nate |      |
|        |                                                                                            |                                             |                       |         |      |      |

51...67 reactions

### **DKM VS CONSTRAINED FREE ENERGY (CFE) APPROACH**

Mechanistic (DKM) model:

- **G** 6 thermal decomposition reactions,  $\Delta H > 0$
- □ 12 abstractions and disproportionations,  $\Delta H < 0$
- □ 18 oxidation reactions,  $\Delta H < 0$
- □ 8 CI/O-chemistry reactions,  $\Delta H > < 0$
- □ 7 dimerisation & dimer reactions  $\Delta H < 0$
- altogether 51 (67) reactions with estimated reaction rate data\*
- 23-28 ODE's with time as independent variable

\*West &al., Ind. Eng. Chem. Res.46, (2007) 6147. Karlemo & al., Plasma Chem .& Plasma Proc. 16, (1996) 59. Thermodynamic (CFE) model:

□ uses the reaction rate measured for the TiCl<sub>4</sub>-conversion\*\*

$$\frac{d\left[TiCl_{4}\right]}{dt} = -k\left[TiCl_{4}\right] ; k = A \exp\left[\frac{-E_{a}}{RT}\right]$$

$$E_a = 73 \pm 2.8 \ kJ \ mol^{-1} (TiCl_4: 0_2 \sim 1: 1) \qquad \xi_r(t) = 1 - \frac{n(TiCl_4)}{n_0(TiCl_4)}$$

**D** apply  $\xi_r(t)$  as a constraint in Gibbs energy minimisation for  $\text{TiCl}_4$  consumption:

|                | 02 | TiCl <sub>4</sub> | TiC l <sub>3</sub> | TiOCl <sub>2</sub> | <br>C l <sub>2</sub> | Cl | ClO | TiO <sub>2</sub> | r           |
|----------------|----|-------------------|--------------------|--------------------|----------------------|----|-----|------------------|-------------|
| <b>C</b> (υ) = | 2  | 0                 | 0                  | 1                  | <br>0                | 0  | 1   | 2                | 0] <i>0</i> |
|                | 0  | 4                 | 3                  | 2                  | <br>2                | 1  | 1   | 0                | 0 Cl        |
|                | 0  | 1                 | 1                  | 1                  | <br>0                | 0  | 0   | 1                | 0 Ti        |
|                | 0  | $\overline{-1}$   | 0                  | 0                  | <br>0                | 0  | 0   | 0                | (1) c       |

### □ assume all side reactions fast (LCE)

\*\*Pratsinis & al., J. Am. Ceram. Soc., 70 (1990) 2158. Koukkari & Liukkonen, Ind.Eng.Chem.Res., 41 (2002) 2931.

### **COMPARISON OF THERMODYNAMIC DATA**

GLOBAL EQUILIBRIUM [MIN(G) CALCULATION]; GAS PHASE, P = 3 BAR; T = 1500 K;  $TiCl_4: O_2 \sim 1:1$ 



### **COMPARISON OF DKM AND CFE KINETIC CALCULATION** MAJOR SPECIES



### COMPARISON OF DKM AND CFE KINETIC CALCULATION MAJOR SPECIES



### □ With only gas phase included, the two models appear in close agreement

Kinetics of major gaseous species generally used for aerosol nanoparticle modelling (studies on nucleation and population balance)

### COMPARISON OF DKM AND CFE KINETIC CALCULATION MINOR SPECIES (SELECTION)



minor species monotonically ascending in CFE (unless additional constraints are applied)

(no experimental data for detailed kinetics exist)



## DKM and CFE give congruent results for the (gas phase) kinetics

□ How about model vs. experiments ?



Karlemo & al., Plasma Chem .& Plasma Proc. 16, (1996) 59.

### **EXPERIMENTAL ARRHENIUS PLOT FOR TiCl\_4 CONSUMPTION**

- □ Plug flow reactor measurements of TiCl<sub>4</sub> consumption with various residence times (700-900 C)
- $\Box \Rightarrow \text{effective rate constant} \quad k_{eff} = A \cdot exp \ (-E_a/RT) \qquad E_a \sim 101 \ kJ \cdot mol^{-1}; \ A = 1.59 \cdot 10^5 \ s^{-1}; \ (\text{TiCl}_4: O_2 \sim 1:5)$



Fig. 4. Arrhenius plot of the oxidation rate of TiCl4.

Pratsinis, J.Am.Ceram.Soc. 1990, 73, 7, 2158-62

### GAS PHASE MODELS CHECKED WITH EXPERIMENT ARRHENIUS PLOT\*

□ Plug flow reactor measurements of TiCl<sub>4</sub> consumption with various residence times (700-900 C)

 $\Box \Rightarrow \text{effective rate constant} \quad k_{eff} = A \cdot exp \ (-E_a/RT) \qquad E_a \sim 101 \ kJ \cdot mol^{-1}; \ A = 1.59 \cdot 10^5 \ s^{-1}; \ (\text{TiCl}_4: 0_2 \sim 1:5)$ 



## CFE RESULTS WITH TiO<sub>2</sub>(s) FORMATION

CFE Koukkari & Paiva 2017

CFE \_ DKM comparison



- □ Experiments only followed TiCl<sub>4</sub> concentrations in gas phase
- $\Rightarrow$  TiO<sub>2</sub>(s) 'entered' seems to be the necessary & sufficient condition for agreement with observation



## Use in reactor engineering & scale-up

### Flame reactor scale-up with the rate-constrained model



 $\Box$  TiO<sub>2</sub> is formed as a nanoparticle suspension – used as the white pigment (> 3 Mt/yr)

exothermic main reaction compensated by endothermic side reactions (chlorine dissociation, Ti<sub>x</sub>O<sub>v</sub>Cl<sub>z</sub> formation) and efficient reactor cooling

Objective: Perform reactor scale-up with good coupling of thermochemistry and reaction kinetics and validate the model

### Build-up of the industrial TiCl<sub>4</sub>-oxidiser model



\*TiCl<sub>4</sub> consumption rate measured by Pratsinis & al., 1990

### VALIDATION OF NON-ISOTHERMAL SCALE-UP CALCULATIONS



Koukkari P., Penttilä K. and Keegel, M.: Coupled Thermodynamic and Kinetic Models for High-Temperature Processes, 10th International IUPAC Conference on High Temperature Materials Chemistry, Part I, Forscungszentrum Julich, 2000, 253-256.



### CONCLUSIONS

- Immaterial constraints can be introduced to Gibbs energy minimization to allow the calculation of kinetically controlled systems
- □ reaction matrix serves as basis for new constraints for reaction extents
- □ stoichiometric matrix includes all reactions
- □ ⇒ CFE provides a viable and robust alternative for mechanistic kinetic studies in complex multi-component multi-phase systems; has also small number of kinetic parameters
- Assuming local chemical equilibrium (LCE) with TiO<sub>2</sub>(s) formation agrees with plug flow experiments – encourages more research on CFE/LCE method of multiphase systems

### Published applications of the G(ξ) [Ratemix\*] method

Methanation TiO<sub>2</sub> production Combustion In-line PCC production Clinker formation in cement kilns Phase equilibria during steel solidification Extent of methanation reactions Oxidation of TiCl<sub>4</sub> in furnace Post-flame NO<sub>X</sub> generation Precipitation of CaCO<sub>3</sub>

Formation of C<sub>2,3</sub>S-phases & free lime (cement making) Paraequilibrium phase diagrams



### Computation of steady state thermochemistry in rotary kilns: Application to the cement clinker manufacturing process

Vincent Meyer<sup>a,\*</sup>, Alexander Pisch<sup>a</sup>, Karri Penttilä<sup>b</sup>, Pertti Koukkari<sup>b</sup>

<sup>a</sup> LafargeHolcim R&D, 95 rue du Montmurier – BP15, 38291 St Quentin-Fallavier, France <sup>b</sup> VTT PO Roy 1401 FIN 02041.VTT Finland

#### Para-equilibrium phase diagrams



#### Arthur D. Pelton<sup>a,\*</sup>, Pertti Koukkari<sup>b</sup>, Risto Pajarre<sup>b</sup>, Gunnar Eriksson<sup>c</sup>

\* CRCT – Centre de Recherche en Calcul Thermochimique, Dép. de Génie Chimique, École Polytechnique, C.P. 6079, Succ. Centre Ville, Montréal, Québec H3C 3A7, Ganada \* VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Finland \* CTT - Fechnologies, Kaiserstrases 100, D-5213 44 Herzagerandh, Germany



\*Ratemix is a trademark of VTT



# Thank you for your attention !