# Addition of V<sub>2</sub>O<sub>5</sub> and V<sub>2</sub>O<sub>3</sub> to the GTOX Oxide database

**GTT-Technologies, Herzogenrath** 

GTT-Workshop, 27-29. June 2018, Herzogenrath

Klaus Hack, Tatjana Jantzen



### Addition of VO<sub>x</sub>

**GTT-Technologies** 

#### Vanadium

V as alloying element in steel products for improving their tensile strength, fatigue performance and heat resistance. In chemical industries, V compounds are utilized as a desulfurization catalyst in sulfuric acid production processes.

Vanadium-Titanium alloys as new electrode materials in hydrogen storage batteries. The desulfurization is important in the iron and steel industry.



# **Contents of presentation**

- Introduction
- Binary systems
  - V-O [Yang15]
- Quasi-binary systems
  - Al<sub>2</sub>O<sub>3</sub>-V<sub>2</sub>O<sub>5</sub>
  - **CaO-V**<sub>2</sub>**O**<sub>5</sub>
  - $Cr_2O_3 V_2O_5$
  - FeO-V<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>-V<sub>2</sub>O<sub>5</sub>
  - $MgO-V_2O_5$ ,  $MgO-V_2O_3$
  - $MnO-V_2O_5$ ,  $Mn_2O_3-V_2O_5$
  - *NiO-V*<sub>2</sub>*O*<sub>5</sub>
  - *TiO<sub>x</sub>-V<sub>2</sub>O<sub>3</sub> [Yang17]*
  - SiO<sub>2</sub>-V<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>-V<sub>2</sub>O<sub>5</sub>

- Ternary systems
  - $AI_2O_3$ - $Fe_2O_3$ - $V_2O_5$
  - $AI_2O_3$ -FeO- $V_2O_3$
  - Al<sub>2</sub>O<sub>3</sub>-V<sub>2</sub>O<sub>5</sub>-SiO<sub>2</sub>
  - $CaO-Fe_2O_3-V_2O_5$
  - **CaO-NiO-V**<sub>2</sub>**O**<sub>5</sub>
  - **CaO-SiO<sub>2</sub>-V<sub>2</sub>O<sub>5</sub>**
  - $TiO_2$ - $Ti_2O_3$ - $V_2O_3$



# Introduction

#### **GTT-Technologies**

The associate species were added in order to describe the liquid phase in VO<sub>x</sub>containing systems. The composition of the liquid oxide species are as introduced by Spear taking two moles of cations per associate. Species for similar systems are modelled in the same way, i.e. using the same stoichiometry.

| System                            | Associate species                                                                                                                             | Used data for Gibbs energy |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| <i>V-O</i>                        | V, V <sub>2</sub> O <sub>2</sub> <sup>*</sup> , V <sub>2</sub> O <sub>3</sub> , V <sub>2</sub> O <sub>4</sub> , V <sub>2</sub> O <sub>5</sub> | SGPS database              |
| FeO-V <sub>2</sub> O <sub>3</sub> | FeV <sub>2</sub> O <sub>4</sub>                                                                                                               | This work                  |
| MgO-V <sub>2</sub> O <sub>3</sub> | MgV <sub>2</sub> O <sub>4</sub>                                                                                                               | This work                  |
| MnO-V <sub>2</sub> O <sub>3</sub> | MnV <sub>2</sub> O <sub>4</sub>                                                                                                               | This work                  |

\* *H<sub>f</sub>* changed in this work.



## **Modelling of V-containing phases**

| GTT-Technologies Phase                    | Description                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fcc-A1                                    | (Al, Ca, Fe, Cr, P, Mg, Mn, S, Si, Zn, Ti, O, V) (Va)                                                                                                                                                                                                                                                                                                                                      |
| bcc-A2                                    | (AI, Ca, Fe, Cr, P, Mn, S, Zn, Ti, O, TiO <sub>3</sub> , <mark>V, VO<sub>3</sub></mark> )(Va) <sub>3</sub>                                                                                                                                                                                                                                                                                 |
| cub-A13                                   | (Cr, Fe, Mg, Mn, V)                                                                                                                                                                                                                                                                                                                                                                        |
| cbcc-A12                                  | (Cr, Fe, Mg, Mn, V)                                                                                                                                                                                                                                                                                                                                                                        |
| Titania Spinel                            | (Fe <sup>+2</sup> ,Fe <sup>+3</sup> ,Mg <sup>+2</sup> ,Mn <sup>+2</sup> ,Ti <sup>+4</sup> )(Al <sup>+3</sup> ,Fe <sup>+2</sup> ,Fe <sup>+3</sup> ,Mg <sup>+2</sup> ,Mn <sup>+2</sup> ,Mn <sup>+3</sup> ,Va,Ti <sup>+3</sup> ,V <sup>+3</sup> ) <sub>2</sub> (O <sup>-2</sup> ) <sub>4</sub>                                                                                                |
| PSbrookite-Ti <sub>3</sub> O <sub>5</sub> | (AI, Mg, Fe, Mn, Ti, $V$ ) <sub>1</sub> (AI, Ti, Fe) <sub>1</sub> (Ti) <sub>1</sub> (O) <sub>5</sub>                                                                                                                                                                                                                                                                                       |
| MeVO <sub>4</sub>                         | $(AI^{+3}, Fe^{+3})_1 (V^{+5})_1 (O^{-2})_4$                                                                                                                                                                                                                                                                                                                                               |
| Rutile                                    | ( <i>Ti</i> , <b>V</b> )₁( <u>O</u> , Va)₂                                                                                                                                                                                                                                                                                                                                                 |
| Sigma                                     | ( <u>Fe, Mn</u> ) <sub>8</sub> (Cr, <b>V</b> ) <sub>4</sub> (Cr, Fe, Mn, <b>V</b> ) <sub>18</sub>                                                                                                                                                                                                                                                                                          |
| Beta                                      | ( <b>V</b> ) (O,Va)                                                                                                                                                                                                                                                                                                                                                                        |
| C2S-C3P                                   | $(\underline{Ca^{+2}}, Cr^{+2}, Mg^{+2}, Mn^{+2})_3(\underline{Ca^{+2}}, \underline{Va})(\underline{P^{+5}}, \underline{Si^{+4}}, \underline{V^{+5}})_2(O^{-2})_8$                                                                                                                                                                                                                         |
| Gamma                                     | ( <b>V</b> ) (O, <u>Va</u> ) <sub>0.5</sub>                                                                                                                                                                                                                                                                                                                                                |
| Corundum                                  | ( <u>Al+3</u> ,Cr+2, <u>Cr+3</u> ,Fe+3, <u>Mn+3</u> , <u>Ti+3</u> ,Fe <sub>0.5</sub> Ti <sub>0.5</sub> +3, <u>Mg<sub>0.5</sub>Ti<sub>0.5</sub>+3</u> , <u>Mn<sub>0.5</sub>Ti<sub>0.5</sub>+3</u> , <u>V+3</u> , V+4) <sub>2</sub>                                                                                                                                                          |
|                                           | (Cr <sup>+3</sup> , Va) <sub>1</sub> (O <sup>-2</sup> ) <sub>3</sub>                                                                                                                                                                                                                                                                                                                       |
| $V_3O_5$ and $M_8O_{15}$                  | ( <b>V,</b> Ti) <sub>3</sub> (O) <sub>5</sub> and ( <u>V, Ti</u> ) <sub>8</sub> (O) <sub>15</sub>                                                                                                                                                                                                                                                                                          |
| $T_5O_9$ and $V_5O_9$                     | ( <b>V</b> , <u>Ti</u> ) <sub>3</sub> (O) <sub>5</sub> and ( <u>V</u> , Ti) <sub>3</sub> (O) <sub>5</sub>                                                                                                                                                                                                                                                                                  |
| $M_4O_7$ and $M_6O_{11}$                  | ( <u>V, Ti</u> ) <sub>4</sub> (O) <sub>7</sub> and ( <u>V, Ti</u> ) <sub>6</sub> (O) <sub>11</sub>                                                                                                                                                                                                                                                                                         |
| МеО                                       | ( <i>Al</i> <sup>+3</sup> , <i>Ca</i> <sup>+2</sup> , <i>Cr</i> <sup>+3</sup> , <i>Fe</i> <sup>+2</sup> , <i>Fe</i> <sup>+3</sup> , <i>Mg</i> <sup>+2</sup> , <i>Mn</i> <sup>+2</sup> , <i>Mn</i> <sup>+3</sup> , <i>Ti</i> <sup>+4</sup> , <i>Ti</i> <sup>+3</sup> , <i>V</i> <sup>+2</sup> , <i>V</i> <sup>+3</sup> , <i>V</i> , <i>Zn</i> <sup>+2</sup> , <i>Va</i> )(O <sup>-2</sup> ) |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                            |

#### Modelling of the phases in ternary systems

| System                                                                                        | Phase                                                                                                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Used data                                                                                                    |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Al <sub>2</sub> O <sub>3</sub> -FeO-V <sub>2</sub> O <sub>3</sub>                             | Titania Spinel                                                                                                       | $(Fe^{+2},Fe^{+3})(AI^{+3},Fe^{+2},Fe^{+3},V^{+3},Va)_2(O^{-2})_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Present work                                                                                                 |
| Al <sub>2</sub> O <sub>3</sub> -Fe <sub>2</sub> O <sub>3</sub> -V <sub>2</sub> O <sub>5</sub> | MeVO <sub>4</sub>                                                                                                    | $(AI^{+3}, Fe^{+3})_1 (V^{+5})_1 (O^{-2})_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Present work                                                                                                 |
| <b>CaO-Fe</b> <sub>2</sub> <b>O</b> <sub>3</sub> -V <sub>2</sub> <b>O</b> <sub>5</sub>        | Ca <sub>6</sub> Fe <sub>7</sub> V <sub>3</sub> O <sub>24</sub>                                                       | stoichiometric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Present work                                                                                                 |
| CaO-NiO-V <sub>2</sub> O <sub>5</sub>                                                         | Ca <sub>5</sub> Ni <sub>4</sub> V <sub>8</sub> O <sub>24</sub>                                                       | stoichiometric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Present work                                                                                                 |
| CaO-SiO <sub>2</sub> -V <sub>2</sub> O <sub>5</sub>                                           | $\alpha$ -Ca <sub>2</sub> SiO <sub>4</sub>                                                                           | $(Ca^{+2})_3(\underline{Ca^{+2}}, Va)(V^{+5}, \underline{Si^{+4}})_2(O^{-2})_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Present work                                                                                                 |
| TiO <sub>2</sub> -Ti <sub>2</sub> O <sub>3</sub> -V <sub>2</sub> O <sub>3</sub>               | Pseudobrookite<br>Rutile<br>$Ti_2VO_5$<br>$T_5O_9$<br>$V_3O_5$<br>$M_4O_7$<br>$V_5O_9$<br>$M_6O_{11}$<br>$M_8O_{15}$ | $\begin{array}{l} (\text{Ti, V})_{1}(\text{Ti})_{1}(\text{Ti})_{1}(\text{O})_{5} \\ (\text{Ti, V}) (\text{O, Va})_{2} \\ \text{stoichiometric} \\ (\underline{\text{Ti}}, \text{V})_{5}\text{O}_{9} \\ (\overline{\text{Ti}}, \underline{\text{V}})_{3}(\text{O})_{5} \\ (\overline{\text{Ti}}, \underline{\text{V}})_{3}(\text{O})_{5} \\ (\overline{\text{Ti}}, \text{V})_{4}(\text{O})_{7} \\ (\overline{\text{Ti}}, \underline{\text{V}})_{5}(\text{O})_{9} \\ (\overline{\text{Ti}}, \underline{\text{V}})_{5}(\text{O})_{9} \\ (\overline{\text{Ti}}, \text{V})_{6}(\text{O})_{11} \\ (\overline{\text{Ti}}, \text{V})_{8}(\text{O})_{15} \end{array}$ | Present work<br>[Yang17]<br>[Yang17]<br>[Yang17]<br>[Yang17]<br>[Yang17]<br>[Yang17]<br>[Yang17]<br>[Yang17] |

#### V-O phase diagram

#### **GTT-Technologies**

ç

Temperature



#### Al<sub>2</sub>O<sub>3</sub>-V<sub>2</sub>O<sub>5</sub> phase diagram





### Al<sub>2</sub>O<sub>3</sub>-V<sub>2</sub>O<sub>3</sub> phase diagram



A. Muan and M. S. Najjar, "Compositions involving V2O3-Al2O3-CaO", US Patent 5,070,065, December 3, 1991.



#### CaO-V<sub>2</sub>O<sub>5</sub> phase diagram



V.L.Volkov, A.A. Fotiev, L.L. Surat, Zh. Fiz. Khim., 49 [6], (1975), pp.1575-1577.



#### Cr<sub>2</sub>O<sub>3</sub>-V<sub>2</sub>O<sub>5</sub> phase diagram in air





#### Modelling of Titania Spinel



Titania Spinel 1/+3 (Fe<sup>+2</sup>,Fe<sup>+3</sup>,Mg<sup>+2</sup>, Mn<sup>+2</sup>, Ti<sup>+4</sup>)  $(Al^{+3}, Fe^{+2}, Fe^{+3}, Mg^{+2}, Mn^{+2}, Mn^{+3}, Ti^{+3}, V^{+3}, Va)_2 (O^{-2})_4$ 



20 40 0 60 FeV<sub>2</sub>O<sub>4</sub> 80 100 Wt % V.0

Spinels with  $V_2O_3$ 

TiO 1.5

 $MgV_2O_4$ ,  $MnV_2O_4$ ,  $FeV_2O_4$ 

J.-B. Kang, H.-B. Lee, ISIJ Intern., 45 (2005), pp. 1543-1551.

A.D. Pelton, G. Eriksson, D. Krajewski, M.Göbbels, E. Woermann, Z. Phys. Chem., 207 (1998), pp. 163-180.

B. Leusmann, N. Jb. Miner. Mh., 12 (1979), pp. 556-559.

### FeO-V<sub>2</sub>O<sub>3</sub> phase diagram in equilibrium with Fe





#### Isothermal section at 600°C in Al<sub>2</sub>O<sub>3</sub>-FeO-V<sub>2</sub>O<sub>3</sub>

**GTT-Technologies** 



100 v,o,



#### Fe<sub>2</sub>O<sub>3</sub>-V<sub>2</sub>O<sub>5</sub> phase diagram in air





#### MgO-V<sub>2</sub>O<sub>5</sub> phase diagram in air



R. Wollast and A. Tazairt, Silic. Ind., 34 [2] 37-45 (1969).



### MgO-V<sub>2</sub>O<sub>3</sub> phase diagram



L. Cini, Radex Rundsch., No. 2, 102-112 (1968).



#### MnO-V<sub>2</sub>O<sub>5</sub> phase diagram in equilibrium with Mn





#### MnO-V<sub>2</sub>O<sub>5</sub> phase diagram, CO/CO<sub>2</sub>=1





### NiO-V<sub>2</sub>O<sub>5</sub> phase diagram





#### Isothermal section at 600°C in Al<sub>2</sub>O<sub>3</sub>-V<sub>2</sub>O<sub>5</sub>-SiO<sub>2</sub>





#### Isothermal section at 600°C in CaO-Fe<sub>2</sub>O<sub>3</sub>-V<sub>2</sub>O<sub>5</sub>





#### Isothermal section at 600°C in CaO-NiO-V<sub>2</sub>O<sub>5</sub>





### Isothermal section at 1500°C in CaO-V<sub>2</sub>O<sub>5</sub>-SiO<sub>2</sub>



**C2S-C3P**– solid solution phase  $\alpha$ -Ca<sub>2</sub>SiO<sub>4</sub> with solubility for CrO,MgO,MnO and  $\alpha$ '-Ca<sub>3</sub>P<sub>2</sub>O<sub>8</sub> with solubility for MgO. (<u>Ca<sup>+2</sup></u>,Cr<sup>+2</sup>,Mg<sup>+2</sup>,Mn<sup>+2</sup>)<sub>3</sub>(<u>Ca<sup>+2</sup></u>,Va)(<u>P<sup>+5</sup></u>,Si<sup>+4</sup>,V<sup>+5</sup>)<sub>2</sub>(O<sup>-2</sup>)<sub>8</sub> with end-members:





### Isothermal section at 1200°C in TiO<sub>2</sub>-Ti<sub>2</sub>O<sub>3</sub>-V<sub>2</sub>O<sub>3</sub>



| Phase                          | Description                                                                                                           | Used data    |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------|
| Corundum                       | (Ti <sup>+3</sup> ,V <sup>+3</sup> , V <sup>+4</sup> ) <sub>2</sub> (Va) <sub>1</sub> (O <sup>-2</sup> ) <sub>3</sub> | Present work |
| Pseudobrookite                 | (Ti, V) <sub>1</sub> (Ti) <sub>1</sub> (Ti) <sub>1</sub> (O) <sub>5</sub>                                             | Present work |
| Rutile                         | (Ti, V) (O, Va) <sub>2</sub>                                                                                          | [Yang17]     |
| V <sub>3</sub> O <sub>5</sub>  | (Ti, <u>V</u> ) <sub>3</sub> (O) <sub>5</sub>                                                                         | [Yang17]     |
| M <sub>4</sub> O <sub>7</sub>  | (Ti, V) <sub>4</sub> (O) <sub>7</sub>                                                                                 | [Yang17]     |
| V <sub>5</sub> O <sub>9</sub>  | (Ti, <u>V</u> ) <sub>5</sub> (O) <sub>9</sub>                                                                         | [Yang17]     |
| M <sub>6</sub> O <sub>11</sub> | (Ti, V) <sub>6</sub> (O) <sub>11</sub>                                                                                | [Yang17]     |
| M <sub>8</sub> O <sub>15</sub> | (Ti, V) <sub>8</sub> (O) <sub>15</sub>                                                                                | [Yang17]     |



# Conclusions

- The liquid phase in all subsystems was evaluated using associate species model (two cations per species).
- All available experimental information was used.
- 1 binaries, 14 quasi-binaries and 7 ternary systems were assessed.
- The solubility ranges of 20 Vanadium containing solid solution phases were modelled.



### **Thanks for your attention**



