

The importance of computational thermodynamics in process modeling and control: dephosphorisation as an example

S. Khadhraoui ¹ , K. Hack ² , T. Jantzen ²

¹ SMS group GmbH, ² GTT Technologies

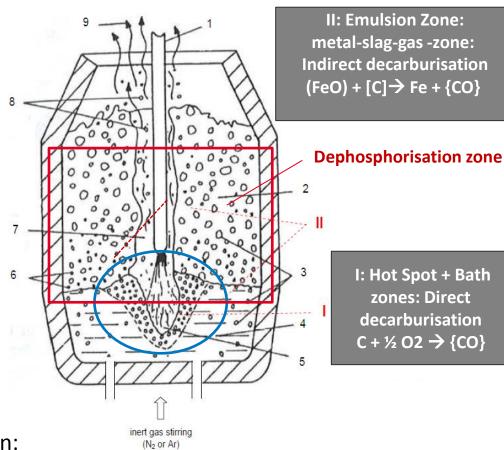
GTT Users' meeting, 28-30.06.2018, Herzogenrath

Content

- Dephosphorisation in the converter process: What is known?
- * why considering a comp. thermodynamics approach?
- ❖ Simulation results: P distribution in heterogeous slags
- Dynamic modeling approach in the BOF DePhos Project
- Conclusion and future work

Sabrine Khadhraoui January 23, 2019 2

Dephosphorisation in the converter process


Introduction

- SMS @ group
 - G

- P in steel should be removed up to a certain ultra low values < 0.01 wt.
- Dephosphorisation reaction : metal-slag-reaction

[P]
$$_{droplet}$$
+ (O) slag+ [O] droplet \leftrightarrow (PO $_{4}^{3+}$)

- The converter process is an excellent aggregate for P removal
 - enhanced deP thermodynamics
 - oxidizing conditions
 - basic slag formation
 - enhanced deP reaction kinetics
 - high mixing in bath: oxygen jet impingement + decarburisation reaction
 - droplets generation to the emulsion:
 metal-slag interface

1) Top lance; 2) Foamy slag; 3) CO-bubbles; 4) Bath; 5) Fire spot; 6) Iron droplets; 7) Lance channel; 8) iron droplets; 9) Brown fume

P-Distribution relation (Equilibrium)

Dephosphorisation reaction

$$[P] + (O) + [O] \leftrightarrow (PO_4^{3+})$$

Phosphorus capacity

$$K_{PO} = \frac{(\%P)}{[\%P]} (\%FeO)^{-2.5}$$

or
$$K_{PO} = \frac{(\%P)}{[\%P]}[O]^{-2.5}$$

- Example of a P-distribution equations for CaO-FeO-SiO2-MgO-P2O5 (< 5 wt.% P2O5)
 - ❖ Turkdogan 1999

$$\log(\frac{(\%P)}{[\%P]}) = \underbrace{\frac{21740}{T} - 9.87 + 0.071 \cdot \underbrace{((\%CaO) + 0.15 \cdot (\%MgO))}_{log(K_{PO})} + 2.5 \cdot \log(Fe)}_{log(K_{PO})}$$

Various Lp and KPO relations (Equilibrium) are available in the literature

Turkdogan 1999

Suito

Fruehan 1999

Healy

Turkdogan 2004

Zhang

Lachmund 2001

Balajiva

Fischer

Ide & Fruehan

Schürmann 1991

Basu & Lahiri

Why computational thermodynamics for P-equilib. study?

Sabrine Khadhraoui January 23, 2019 6

Why considering a comp. thermodynamic based approach?

- slag composition: around lime saturation (considered as target zone)
- Temperature ranges: 1550°-1600 C°
- > conditions at end of blow
- However:

SiO₂ - FeO - CaO - Fe - MnO

Fe/(SiO₂+FeO+CaO+MnO) (g/g)=0.001, MnO/(SiO₂+FeO+CaO+Fe-(g/g)=0, 1700°C, 1 atm

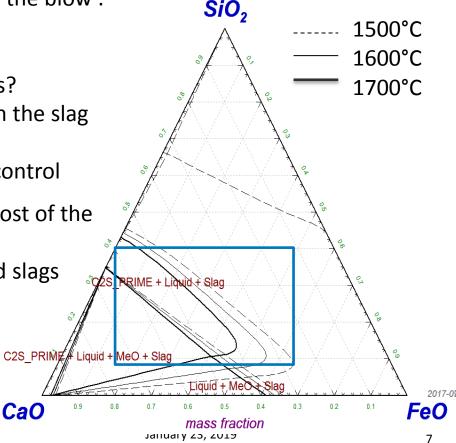
do not cover the tot. variation ranges during the blow:

Temp: 1250-1750°C

FeO varies between 10-60 wt.%

→ Applicability beyond the exp. conditions?

 Strong evidence that P end values depend on the slag path CaO-FeO-SiO₂ (main system)


→ dynamic modeling required for P end point control

 Converter slags are saturated on C2S during most of the blow, also C3S, monoxide can be present

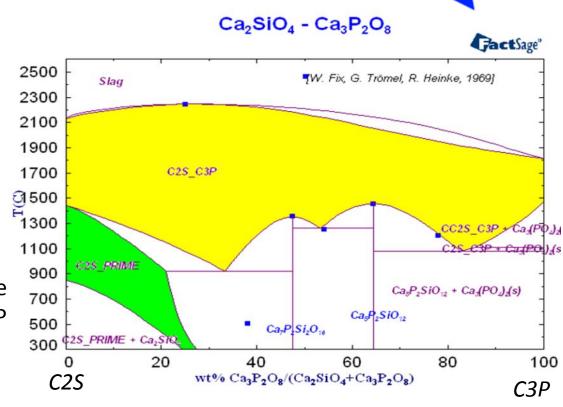
previous relations developed for liquid slags

– effect of solid phases on Lp?

Modeling P equilibrium (Lp) based on computational thermodynamics approach

Simulation results

Sabrine Khadhraoui January 23, 2019 8


Effect of C2S phase on Lp equilibrium

SMS @ group

- ➤ illimited solubility of P in C2S
 - C2S → C2S_C3P in the presence of (P2O5) in the slag
 - complete replacement of SiO4- anion by the P3O4+ possible

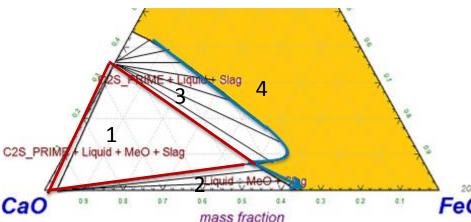
Conclusion:

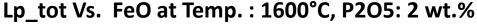
 thermodynamically, the C2S phase has a high potential of dissolving P in oxygen steelmaking pocesses!

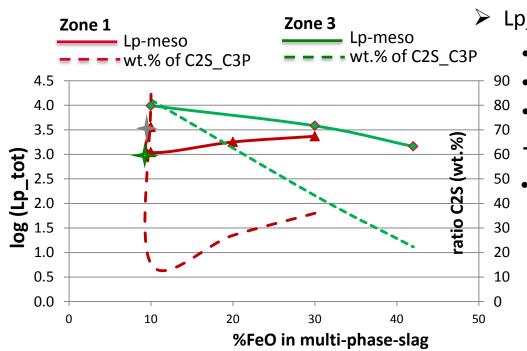
C2S: Ca2SiO4

C3P: Ca3P2O8

C2S_C3P: phases

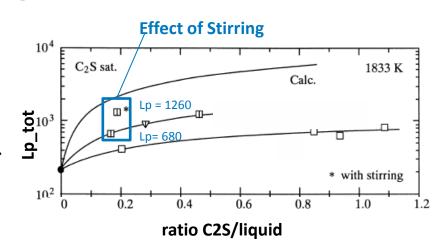

Sabrine Khadhraoui January 23, 2019

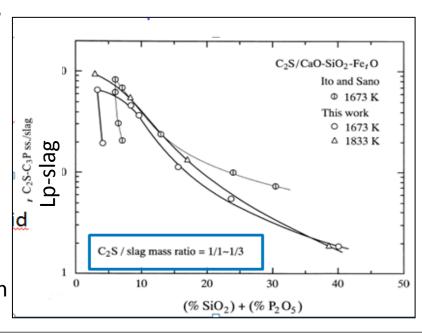

Phosphorus distribution modeling for Converter slags (1)


SMS @ group

P-distribution in multi-phase-slag

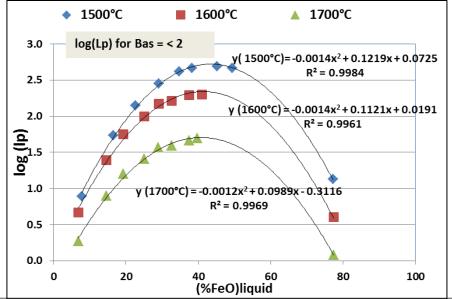
- Simulation results: BOF DePhos database:
 - P-distribution in Zone 1 and Zone 3

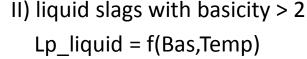

➤ Lp_tot in C₂S-saturated slags:

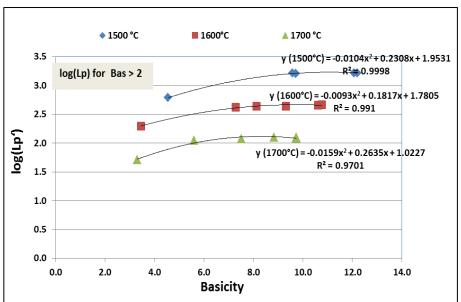

- mainly a function of the C₂S wt.%
- very high: > 1000
- Lp (Zone 3) > Lp (Zone1)
- → reconsider target zone for end of blow?
- cannot be expressed in terms of multiphase-slag composition (FeO, basicity...)
 - applicability of exp. relations for liq. slags?

Phosphorus distribution modeling for Converter slags (2)

- > Experimental observations of Suito et al. [ISIJ 2006]
 - P-distribution between C2S (meso-phase) and liquid slag phase (1560°C)
 - strong function of C2S/liquid phase ratios
 - experimental max ≈ 1000, at 30 wt.% C2S
 → much lower than theoretical values (> 5000)
 - Lp increased by 80% in case of stirring
 - Exp. values are much higher than the exp. values given in the previous Lp-relations (Turkdogan, ...)
 - relations are not applicable for C2Ssaturated slags
 - can only be applied for liquid slags and/or liquid slag part
 - investigated P distribution between C2S and liquid slag: Lp_slag
 - depends mainly on (%SiO2)
 - What is the industrial limit for Lp_tot and at which C2S ratio?


Phosphorus distribution modeling for Converter slags (3)


SMS @ group

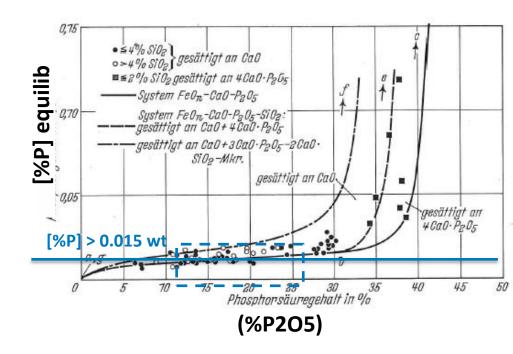

- ❖ Adapted Lp approach
- P-distribution in between metal and a multi-phase-slag

$$Lp_tot = Lp_liquid (1 + Lp_slag*W)/(1 + W))$$

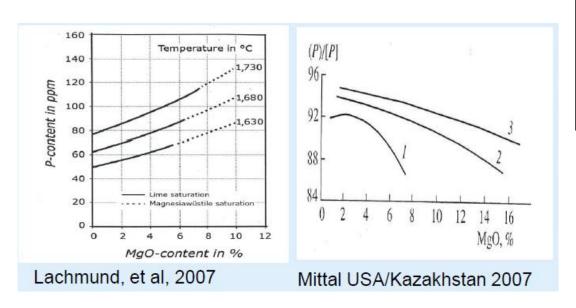
- Lp_slag: P distribution between C2S and liquid slag part: (Experimental findings [Ito,Suito])
- W: ratio C2S /liq_slag; Lp_liquid = (%P) slag/[%P]metal (thermodynamic simulations)
- Results of Lp modeling in <u>liquid slag</u> for a wide range of compositions and temperature
 - I) liquid slags with basicity < 2Lp_liquid = f(Fe_tO,Temp)

Sabrine Khadhraoui

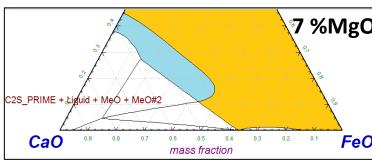
Is the C2S_C3P phase behind unexplained discrepancies?


High P system

 Early laboratory studies of P-distribution in the CaO-FeO-P2O5-SiO₂ slags (high P system) :

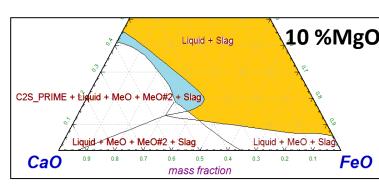


- > [%P] Equilibrium values > = 0.02 over the total comp. range
- ≠ LD-AC process: [%P] values as low as 0.004 wt.% were found in droplets!
- → absence of mixing in equilib studies (majority) : no P-enrichement of C₂S
- for (%FeO) contents > 15-20% no longer contribute to lowering [%P]
- ≠ real plant observations!
- → high (%FeO)-content in the slag increases LP_slag (between liquid slag and C₂S_C3P ss.)


Low P system

- Equilib studies in the CaO-FeO-SiO₂ (Low-P-System)
 - ➤ (%MgO) has a positive effect
 - ≠ some Plant observations: MgO has negative effect

SMS (ii) group

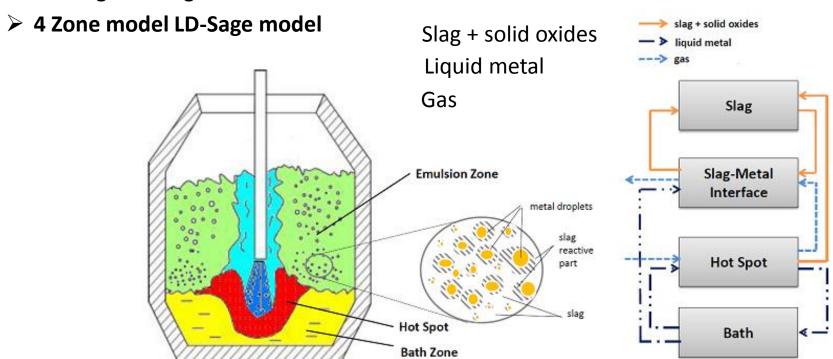


- Results of thermochemical simulations:
 - MgO addition leads to
 - \circ \downarrow C2S-amount

↓ Lp tot

↑ monoxide phase

Sabrine Khadhraoui January 23, 2019 15

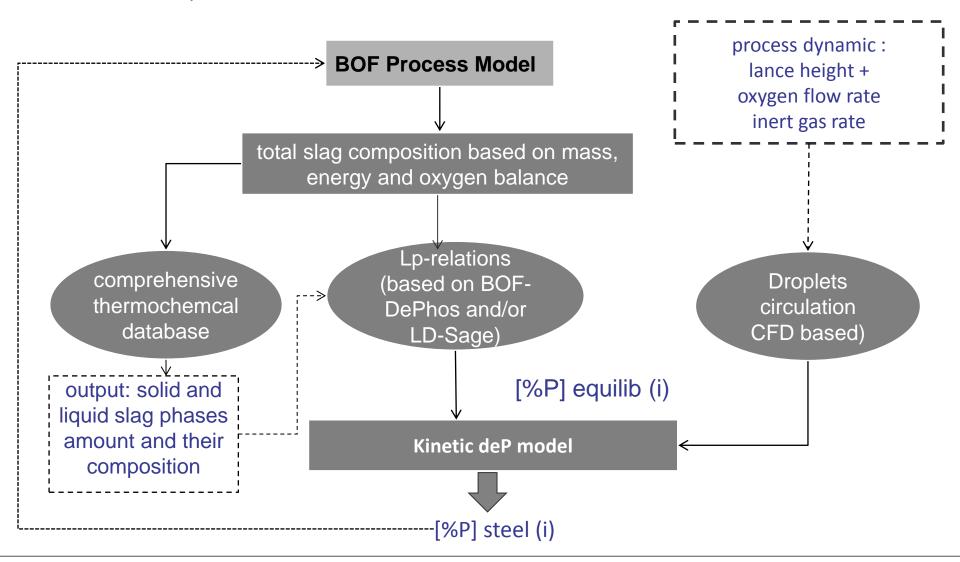

Considered dynamic modeling approach

January 23, 2019 16

1. dynamic converter model: LD-Sage (GTT/SMS)

- Principal of interlinked local-equilibria
 - local equilibria in the reaction zone: integration of BOF DePhos thermochemical database
 - using SimuSage-Software

- Consideration of kinetic aspects (independently developed)
 - circulation rate: based on CFD approach = f (dynamic practice data, lance height, flow rate, stirring rate...)
 - Lime dissolution rate: Experimental investigations (KTH)
 - residence time of droplets in the emulsion


January 23, 2019 17

© SMS group GmbH

2. dynamic model: SMS Kinetic model (internal)

• Simplified sequence of kinetic dephosphorisation calculation in the BOF Design Model for a time step Δt

January 23, 2019 18

Conclusion

Conclusion/Outlook

Converter slags are heterogenous during the blow and , under certain conditions, also at the end of blow

- saturated on C₂S, or
- double saturated on C₂S and CaO-ss
- a general relation relating Lp and heterogenous slag composition could not be established:
 - determination of solid and liquid slag phases + their composition essential
 - developement of P distribution relations seperately for :
 - between metal and liquid slag ✓
 - o between liquid slag and solid phases: industrial trials required
 - → Lp between multi-phase-slag and liquid metal
- > The C₂S-phase plays an important role in dephosphorisation
 - for both high + low P systems
 - P distribution values > 1000 are achievable
 - confirmed by several industrial findings
 - Study of enrichement process of this phase required
 - laboratory scale: effect of stirring, foaming...
 - industrial plant trials
 - → subject of future investigations