Materials Chemistry II -Applications 1-

Moritz to Baben GTT-Technologies, Herzogenrath

mtb@gtt-technologies.de to_baben@mch.rwth-aachen.de

Outline

1. Understanding processes&materials based on G(x,T,p) QUALITATIVE APPLICATION OF MC II

2. Modelling G(x,T,p) based on theory&experiment QUALITATIVE \rightarrow QUANTITATIVE

3. Modelling processes&materials based on G(x,T,p) QUANTITATIVE APPLICATION OF MC II

You want to be an engineer.

Why?

Association of German Engineers (VDI): Fundamentals of engineering ethics

"Ingenieurinnen und Ingenieure bekennen sich zu ihrer Bringpflicht für sinnvolle technische Erfindungen und Lösungen."

"Engineers are committed to delivering sensible technology and technical solutions."

https://www.vdi.de/bildung/ethische-grundsaetze/ethische-grundsaetze/

In order to develop sensible technology and technical solutions as a metallurgical engineer you need to be able to **apply** the **fundamentals of thermodynamics**. "Sensible technology": What thermodynamic property will tell you whether a process can occur spontaneously?

A) ΔH_{system}

B) ΔS_{system}

C) ΔG_{system}

D) ΔV_{system}

"Sensible technology": What thermodynamic property will tell you whether a process can occur spontaneously?

A) ΔH_{system}

B) ΔS_{system}

C) ΔG_{system}

D) ΔV_{system}

"Sensible technology": What thermodynamic property will tell you whether a process can occur spontaneously?

A) ΔH_{system}

B) ΔS_{system}

C)
$$\Delta G_{\text{system}} < 0$$

We need to describe $G(T,p,X_i)!$

D)
$$\Delta V_{system}$$

Computational thermodynamics

Alternative software solutions: ThermoCalc, Pandat, JMatPro, OpenCalphad, MTDATA...

www.berzelius.de/berzelius/bilder/qsl-reaktor.jpg

Alternative software solutions: ThermoCalc, Pandat, JMatPro, OpenCalphad, MTDATA...

www.berzelius.de/berzelius/bilder/qsl-reaktor.jpg

Alternative software solutions: ThermoCalc, Pandat, JMatPro, MTDATA, OpenCalphad...

Outline

1. Understanding processes&materials based on G(x,T,p) QUALITATIVE APPLICATION OF MC II

2. Modelling G(x,T,p) based on theory&experiment QUALITATIVE \rightarrow QUANTITATIVE

3. Modelling processes&materials based on G(x,T,p) QUANTITATIVE APPLICATION OF MC II

Strategy:

 $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$ Think about bonds & configurations

mechanical mixture (two powders)

Mechanical mixture

 $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$ Think about bonds & configurations

Strategy:

 $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$ Think about bonds & configurations

mechanical mixture (two powders)

→ ideal/regular solution mixed

Ideal solution

 $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$ Think about bonds & configurations

G

Bonds: Definition of ideal solution: Bond energy ε of A-B is the same as the average of A-A and B-B.

→ No change in energetics → $\Delta H_{mix} = 0$ Configurations:

Statistical distribution of atoms

 \rightarrow Large entropy gain $\rightarrow \Delta S_{mix} > 0$

total =
$$X_A G_A + X_B G_B + \Delta G_{mix}$$

= $X_A G_A + X_B G_B - T\Delta S_{mix}$
 \rightarrow what is ΔS_{mix} ?

Ideal solution $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$

Strategy: $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$

Think about bonds & configurations

mechanical mixture (two powders)

→ ideal/regular solution mixed

 $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$ Think about bonds & configurations

Bonds:

Bond energy ε of A-B is NOT the same as the average of A-A and B-B.

 \rightarrow Change in energetics $\rightarrow \Delta H_{mix} \neq 0$

Configurations:

Statistical distribution of atoms

 \rightarrow High entropy gain $\rightarrow \Delta S_{mix} > 0$

$$G_{total} = X_A G_A + X_B G_B + \Delta G_{mix}$$

= $X_A G_A + X_B G_B + \Delta H_{mix} - T\Delta S_{mix,ideal}$
 \rightarrow what is ΔH_{mix} ?

 $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$ Think about bonds & configurations

 $\begin{array}{l} \Delta H_{mix} = \Omega * X_A * X_B \\ \Omega = N_a * z * \epsilon = N_a * z * (\epsilon_{AB} - \frac{1}{2} (\epsilon_{AA} + \epsilon_{BB})) \\ \Omega : \mbox{ Interaction parameter} \end{array}$

If **A-B** bonds are energetically **more favourable** than the mean of A-A and B-B bonds, Ω and ΔH_{mix} will be **negative**.

If **A-B** bonds are energetically **less** favourable than the mean of A-A and B-B bonds, Ω and ΔH_{mix} will be **positive**.

Bonds:

Bond energy ε of A-B is NOT the same as the average of A-A and B-B. \rightarrow Change in energetics $\rightarrow \Delta H_{mix} \neq 0$

Configurations: Statistical distribution of atoms \rightarrow High entropy gain $\rightarrow \Delta S_{mix} > 0$

Limitations of the regular solution model

 ΔS_{mix} : random mixing of A and B, i.e. A-A, B-B and A-B bonds must have same energy.

 ΔH_{mix} : 2 A-B bonds do not have the same energy as one A-A and one B-B bond.

- $\Omega = \mathsf{N}_{\mathsf{a}}\mathsf{z}[\varepsilon_{\mathsf{A}\mathsf{B}} \frac{1}{2}(\varepsilon_{\mathsf{A}\mathsf{A}} + \varepsilon_{\mathsf{B}\mathsf{B}})]$
- Ω < 0 : tendency towards ordering
- $\Omega > 0$: tendency towards clustering

Ω has to be small, otherwise A and B will **not** be randomly mixed! (→ different ΔS_{mix} and ΔH_{mix}!)

Strategy:

 $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$ Think about bonds & configurations

mechanical mixture (two powders) → ideal/regular solution mixed

 \rightarrow

real solution ordering/clustering

Example: Solution of 50% A and 50% B $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$

• ΔG_{mix} minimizes with minimum ΔH_{mix} and maximum ΔS_{mix}

Probability of A-B-pair increases

Example: Solution of 50% A and 50% B $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$

• ΔG_{mix} minimizes with minimum ΔH_{mix} and maximum ΔS_{mix}

 $P_{AB} = 0$ $\Delta H_{mix} = 0$ $\Delta S_{mix} = 0$

Probability of A-B-pair increases

Example: Solution of 50% A and 50% B $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$

• ΔG_{mix} minimizes with minimum ΔH_{mix} and maximum ΔS_{mix}

 $P_{AB} = 0$ $\Delta H_{mix} = 0$ $\Delta S_{mix} = 0$

Probability of A-B-pair increases

 $\begin{array}{ll} \mathsf{P}_{\mathsf{A}\mathsf{B}} &= 2^* \mathsf{X}_\mathsf{A}^* \mathsf{X}_\mathsf{B} = 0.5 & \mathsf{P}_{\mathsf{A}\mathsf{B}} &= 1 \\ \Delta \mathsf{H}_{\mathsf{mix}} &= 0.25 \; \Omega & \Delta \mathsf{H}_{\mathsf{mix}} = 0.5 \; \Omega \\ \Delta \mathsf{S}_{\mathsf{mix}} &= -\mathsf{R}(\mathsf{X}_\mathsf{A} \,\mathsf{In}\mathsf{X}_\mathsf{A} + \mathsf{X}_\mathsf{B} \,\mathsf{In}\mathsf{X}_\mathsf{B}) & \Delta \mathsf{S}_{\mathsf{mix}} = 0 \end{array}$

Example: Solution of 50% A and 50% B $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$

• ΔG_{mix} minimizes with minimum ΔH_{mix} and maximum ΔS_{mix}

 $P_{AB} = 0$ $\Delta H_{mix} = 0$ $\Delta S_{mix} = 0$

Probability of A-B-pair increases

Example: Solution of 50% A and 50% B $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$

• ΔG_{mix} minimizes with minimum ΔH_{mix} and maximum ΔS_{mix}

 $P_{AB} = 0$ $\Delta H_{mix} = 0$ $\Delta S_{mix} = 0$ Probability of A-B-pair increases

 $\begin{array}{ll} \mathsf{P}_{\mathsf{A}\mathsf{B}} &= 2^* \mathsf{X}_\mathsf{A}^* \mathsf{X}_\mathsf{B} = 0.5 & \mathsf{P}_{\mathsf{A}\mathsf{B}} &= 1 \\ \Delta \mathsf{H}_{\mathsf{mix}} &= 0.25 \; \Omega & \Delta \mathsf{H}_{\mathsf{mix}} = 0.5 \; \Omega \\ \Delta \mathsf{S}_{\mathsf{mix}} &= -\mathsf{R}(\mathsf{X}_\mathsf{A} \,\mathsf{In}\mathsf{X}_\mathsf{A} + \mathsf{X}_\mathsf{B} \,\mathsf{In}\mathsf{X}_\mathsf{B}) & \Delta \mathsf{S}_{\mathsf{mix}} = 0 \end{array}$

- Example: Solution of 50% A and 50% B $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$
- ΔG_{mix} minimizes with minimum ΔH_{mix} and maximum ΔS_{mix}

 ΔS_{mix} maximizes when # of A-B bonds = $2^*X_A^*X_B$ ΔH_{mix} minimizes with maximum number of A-B bonds

 ΔG_{mix} minimizes between 0.5 and 1!

Example: Solution of **75% A** and **25% B** $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$

• ΔG_{mix} minimizes with minimum ΔH_{mix} and maximum ΔS_{mix}

<pre>> + + + + + + + + + + + + + + + + + +</pre>			****	
<pre>> * * * * * * * * *</pre>		· · · · · · · · · · · ·	· · · · · · · · · · ·	
· • • • • • • • • • • • • • • • • • • •	••• •••••	} + + + + + + + 	· • • • • • • • • • •	

Example: Solution of 75% A and 25% B $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$

• ΔG_{mix} minimizes with minimum ΔH_{mix} 0 and maximum ΔS_{mix}

 ΔS_{mix} maximizes when # of A-B bonds = $2^*X_A^*X_B$ ΔH_{mix} minimizes with maximum number of A-B bonds

 ΔG_{mix} minimizes between $P_{AB,random}$ and $P_{AB,max}$!

Example: Solution of 50% A and 50% B $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$

• ΔG_{mix} minimizes with minimum ΔH_{mix} and maximum ΔS_{mix}

Example: Solution of 50% A and 50% B $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$

• ΔG_{mix} minimizes with minimum ΔH_{mix} and maximum ΔS_{mix}

 ΔS_{mix} maximizes when # of A-B bonds = $2^*X_A^*X_B$ ΔH_{mix} minimizes with minimum number of A-B bonds

 ΔG_{mix} minimizes between 0 and 0.5!

Strategy:

$\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$ Think about bonds & configurations

Application: (Ti,AI)N coatings for cutting tools

→ CHECK PHASE DIAGRAMS E.G. AT <u>www.springermaterials.com</u> <u>www.factsage.com</u> <u>www.asminternational.org/phase-diagrams</u> <u>www.msiport.com</u>

At what temperature do you expect G(x) curves as shown?

At what temperature do you expect G(x) curves as shown?

$(\Omega_{Ti-N} << 0)$ What other information can you extract concerning Ω ?

A: $\Omega_{\text{Ti-N,bcc}} < \Omega_{\text{Ti-N,hcp}}$

B: $\Omega_{\text{Ti-N,bcc}} > \Omega_{\text{Ti-N,hcp}}$

$(\Omega_{Ti-N} << 0)$ What other information can you extract concerning Ω ?

Application: (Ti,Al)N coatings for cutting tools

State of the art for protective coatings on cutting tools : 1980 - 2000 TiN Since ~2000 (Ti,AI)N coatings WHY?

Application: (Ti,AI)N coatings for cutting tools

Mayrhofer, Rachbauer, Rovere, Schneider, *Protective Transition Metal Nitride Coatings* (2012).

Ti_{0.5}Al_{0.5}N: A real solution Visualizing atomic composition in 3D:

3D atom probe tomography

↓Clustering↓

$Ti_{0.5}AI_{0.5}N$: A real solution Visualizing atomic composition in 3D: **REAL SOLUTIONS** 3D atom probe tomography

↓Clustering↓

$Ti_{0.5}AI_{0.5}N$: A real solution

Visualizing atomic composition in 3D: 3D atom probe tomography

REAL SOLUTIONS

↓Clustering↓

Concepts, key ideas

Strategy for predicting metastable phase formation in vapour phase condensation:

 Derive G(x) curves from the stable phase diagram.
For each composition, the single phase with lowest Gibbs energy forms during vapour phase condensation.

In real solutions, atoms form short-range order to minimize G:

clustering in case of $\Omega > 0$ or ordering in case of $\Omega < 0$.

This ordering can be observed!

Application: (Ti,AI)N coatings for cutting tools

Mayrhofer, Rachbauer, Rovere, Schneider, *Protective Transition Metal Nitride Coatings* (2012).

1. What is the stable state for $Ti_{0.5}AI_{0.5}N?$ \rightarrow cub-TiN + hex-AIN

 What is the stable state for Ti_{0.5}Al_{0.5}N?
→ cub-TiN + hex-AIN
How can hex-AIN form?
→ Only by precipitation

 What is the stable state for Ti_{0.5}Al_{0.5}N?
→ cub-TiN + hex-AIN
How can hex-AIN form?
→ Only by precipitation
How can cub-TiN form?
→ Either by de-mixing or by precipitation

1. What is the stable state for

- $Ti_{0.5}AI_{0.5}N?$
- \rightarrow cub-TiN + hex-AIN
- 2. How can hex-AIN form?
- \rightarrow Only by precipitation
- 3. How can cub-TiN form?
- → Either by de-mixing or by precipitation
- 4. What are the activation

energies for de-mixing and for precipitation?

 $E_A(de-mixing) = E_A(diffusion)$

 E_A (precipitation) = E_A (nucleation) + E_A (diffusion)

1. What is the stable state for

- Ti_{0.5}Al_{0.5}N?
- \rightarrow cub-TiN + hex-AIN
- 2. How can hex-AIN form?
- \rightarrow Only by precipitation
- 3. How can cub-TiN form?
- → Either by de-mixing or by precipitation
- 4. What are the activation

energies for de-mixing and for precipitation?

 $E_A(de-mixing) = E_A(diffusion)$

5. Draw intermediate energy steps.

 $E_A(de-mixing) = E_A(diffusion)$

to Baben et al., Materials Research Letters 2016

Thank you for your attention!

