

Stefan van Bohemen¹ and Lutz Morsdorf² ¹ Tata Steel ² MPIE

Predicting the M_s temperature of steels with a thermodynamic based model including the effect of the prior austenite grain size

28 June 2017 GTT-Technologies meeting

* This work has been conducted in the framework of RFCS project ToolMart

Published in Acta Mater. 125 (2017) 401-415

	Tata Steel	Slide 2
Outlin	e	
1	Introduction	
2	Effect of Prior Austenite Grain Size on M _s temperatur	е
3	T ₁ model to replace thermodynamic calculations	
4	Validation of the new M _s model	
5	Benchmarking of the new M _s model	

Martensite

50 CrMo 4 (SAE 4150) Composition: 0.50% C - 0.80% Mn - 0.32% Si - 0.017% P - 0.022% S - 1.04% Cr - 0.17% Cu - 0.24% Mo - 0.11% Ni - <0.01% V Austenitized at 850°C (1562°F)

Adolf Martens 1850-1914

Martensite start (M_s) temperature versus Carbon content

Courtesy: Marder and Krauss (1967)

Slide 4

Effect of Austenite Grain Size on M_s

Sastri, 1965

Yang, 2009

Schematic of the modeling approach

The definition of T₀

Carbon concentration

Slide 7

Martensitic transformations require large undercooling below T₀

$M_s < T < T_0$ ($\Delta G > 0$, but $\Delta G < \Delta G_c$)

Carbon concentration

Definition of the critical driving force ΔG_c

Ghosh and Olson model (1994)

$$\Delta G_{\rm c} = K_1 + W_{\mu} \left(K_{\mu}^i, x_i \right)$$

$$\bigcup_{\mu} W_{\mu} = K_{\mu} x_{\rm C}^{0.5} + \sqrt{\sum_j \left(K_{\mu}^j x_j^{0.5} \right)^2}$$

This work: j = Mn, Si, Cr, Ni or Mo

Modelling approach of Ghosh:

- \succ W_{μ} : athermal interfacial frictional work
- Specific superposition law (Phythagorean)
- \succ K_{μ} 's found by model optimization

Modification/improvements:

- ✤ Account for Austenite Grain Size effects
- Validate model with M_s data of AHSS/UHSS grades
- Solution Make model calculations without dependence on specific thermodynamic databases

Modified Ghosh model capturing M_{s} dependence on D^{γ}

$$\Delta G_c = K_1 + W_{\mu} + W_{HP} + W_C$$

Austenite strengthening, Hall Petch mechanism (Ansell)

 \checkmark Higher YS of austenite \rightarrow more resistance to shape deformation

Observations of lath aspect ratio (c/a)

Ghosh model capturing M_s dependence on D^{γ}

Validation of the model for D^{γ} effect on M_s

 $K_C = 370 \text{ J/mol}, K_{HP} = 350 \text{ J}\mu\text{m}^{0.5}/\text{mol}$ $D_C = 10 - 20 \mu\text{m}$ for most alloys Slide 14

Schematic of the modeling approach

Calculations for Base alloy (0.22C-2.5Mn-0.2Cr-0.2Si)

Comparison of FactSage, MTData & JMatPro

Calculations for Base alloy (0.22C-2.5Mn-0.2Si-0.2Cr)

Linear approximation of **\[G curves is valid nearby Ms \]**

Calculations of ΔG were performed with FactSage

Linear approximation of **\(G curves \)**

- The linear dependence with slope of 7.22 J/molK seems valid for Fe-C alloys in general.
- > A rigorous investigation was started to
 - 1. Confirm that linearity with a slope of 7.22 J/molK is applicable for all steels
 - 2. Correlate T₁ temperatures to the chemical composition of steels

T₁ temperatures against **C** content

Determined with FactSage for plain carbon steels with 0.1Mn and 0.1Si

$$T_1 = 715 - 291C$$

T₁ temperatures against **C** content

Determined with FactSage for alloys with 2.0Mn, 0.2Si and 0.2Cr

$$T_1 = 668 - 291C$$

T₁ dependency on Carbon is not affected by other alloying

T₁ temperatures against Mn content

 $T_1 = Constant - 24Mn$

T₁ temperatures against Si, Cr, Ni and Mo contents

 $T_1 = 718 - 291C - 24Mn - 1.5Si - 5.0Cr - 18.5Ni + 3.5Mo$

Validation T₁ equation with literature data

$$T_1 = 718.3 - 291x_{\rm C} - 24x_{\rm Mn} - 1.8x_{\rm Si} - 5.6x_{\rm Cr} - 18.4x_{\rm Ni} + 3.5x_{\rm Mo}$$

T₁ model benchmarked against FactSage results of **> 70 alloys**:

Largest deviations ~ 3 °C

Schematic of the modeling approach

Slide 26

Table 1. Data of alloys used for the validation of the models for T_1 , D^{γ} (G) and M_s .

Table 2. Data of 62–121 alloys used for the validation of the M_s model.

																D.C	1												1
no.	Ref.	grade	C	Ma	c:	C.	NI:	М-	exp.	calc.	т.	calc.	exp.	calc.	no.	Ref.	grade	C	Ma	c:	<i>C</i> -	NI:	М-	т		calc.	calc.	exp.	calc.
			C	IVIII	51	Cr wt0/	1N1	IVIO	G	G	11	11	IVIs 9C	IVIs 9C				C	NIN	51	Cr	IN1	NIO	I aus	Laus	G	11	IVI _S	IVIs 0C
1	[16]	Sectri	0.22	0.57	0.22	0.85	2.26	0.00	7.2	62	545.0	542.7	208	210		[20]		W1%	W1%	W1%	W1%	WL%	WL%	-0	min.	7.0	50	215	-0
2	[10]	Yang	0.33	23	0.25	0.85	5	0.09	7.6	74	536.2	533.3	325	308	62	[20]		0.40	0.71	0.20	0.10	0.14		880	2	7.4	506	265	254
3	[14]	Garcia	0.15	19	0.2	2	5		7.6	6.5	614.8	617.5	392	382	64	[20]		0.00	2.00	0.50	0.17	0.10		880	2	7.4	500 620	203	200
5	[10]	Gurena	0.10		0.2	-			7.0	0.0	01110	017.0	572	502	65			0.15	2.00	0.25	0.55			880	2	9.1	627	400	400
4		Base	0.22	_			-	1-		~ \		592.8	337	343	63			0.17	1.70	1.50				020	2	8.5	614	200	276
5		Base+Cr	0.22		00	IM	art	12	N1(61		582.7	328	325	00			0.21	1.70	1.50	0.61			920	2	0.0	614	260	370
6		Base+Si	0.22				uit	· (- '	O T	υj		591.9	356	339	67			0.22	2.00	0.10	0.61			860	2	9.6	603	305	362
															68			0.21	2.00	1.27				900	2	9.4	607	370	367
7	[4]	SAE-2340	0.37	0.68	0.21		3.41		7.5	8.3	531.6	531.2	305	300	69	1013		0.20	3.50	1.50				950	2	10.5	573	325	319
8	[4]	SAE-3140	0.38	0.72	0.21	0.49	1.32		7.5	6.9	564.0	563.0	332	327	70	[21]		0.29	2.39	1.76				950	3	9.2	573	325	321
9	[4]	SAE-4130	0.29	0						-	11.3	611.8	377	376	71			0.31	1.66	1.47				900	3	9.0	586	335	339
10	[4]	SAE-4140	0.37	0	~		-	40			87.8	587.1	338	346	72			0.40	1.67	1.48				900	3	9.1	559	300	305
11	[4]	SAE-4340	0.42	0	-ira	ng	'e (194	16		41.2	540.7	288	295	73			0.58	1.54	1.42				900	3	9.0	510	240	246
12	[4]	SAE-4640	0.36	0			\sim (,		65.4	565.0	338	333	74				_					950	2	6.9	601	360	367
13	[4]	SAE-5140	0.42	6.00	0.10	0.25			0.5	1.0		574.3	332	334	75			Tat	a S	tee	וב			950	2	7.5	600	360	363
14	[4]	SAE-6140	0.43	0.74	0.23	0.92			8	7.1	571.2	569.8	327	325	76			101						950	2	8.0	598	355	358
15	[4]	NE-8630	0.30	0.91	0.31	0.52	0.61	0.17	9.5	6.9	594.9	595.1	366	356	77			1		_		•		950	2	8.6	597	350	354
16	[4]	NE-9442	0.38	1.08	0.70	0.40	0.34	0.11	10.5	7.6	572.1	572.4	327	321	78			17	צחו	-76	116			880	2	9.5	599	365	358
															-79			1-0		20	, т О	1		880	2	9.6	602	370	361
17	[18] p.96	En16 (6)	0.33	1.48	0.18	0.16	0.26	0.27	7.5	7.6	581.5	581.7	340	340	80									880	2	9.6	605	375	365
18	[18] p.96	En17 (7)	0.38	1.49	0.25	0.14	0.24	0.41	8	8.1	567.7	567.7	320	320	81			0.25	2.25	1.15				880	2	10.1	589	340	342
19	[5]	En18 (8)	0.39	0.89	0.16	0.88	0.25		5.5	6.6	574.7	5/3.6	320	335	82			0.19	1.97	0.20	0.59			900	4	8.2	612	380	378
20	[18] p.96	En18 (9)	0.48	0.86	0.25	0.98	0.18	0.04	5.5	6.9	550.6	548.9	300	302	83			0.19	2.17	0.20	0.60			900	4	8.5	607	370	370
21	[5]	En19 (10)	0.41	0.64	0.31	1.24	0.18	0.38	8.5	7.9	574.1	5/4.1	320	325	84			0.19	1.59	0.20	0.81			900	4	7.9	620	380	388
22	[18] p.98	En19 (11)	0.41	0.67	0.23	1.01	0.20	0.23	8.5	7.2	574.0	5/4.0	330	328	85			0.19	1.79	0.20	0.77			900	4	8.1	615	375	381
23	[18] p.98	En21 (12)	0.33	0 //			• // /		~	, ,	- 39.8	540.2	310	309	86			0.19	2.16	0.20				900	4	7.7	611	380	379
24	[18] p.101	En24 (17)	0.38		·		- 11		· ^ \		58.7	557.5	220	207	87			0.19	1.99	0.20	0.30			900	4	7.9	613	380	381
25	[18] p.100	En25 (19)	0.31	6 3	τе	vei	n ()	195	b 1		48.0	546.0	205	327	88			0.19	2.05	0.07	0.60			900	4	8.1	610	380	376
20	[3] [18] p 101	En26 (20)	0.38	0			· · ·		- /		20.5	530.5	200	285	89			0.20	2.04	0.19	0.60			900	4	8.3	609	380	373
28	[18] p.101	En20P(21)	0.32	0.47	0.20	1.21	4.13	0.30	7	0.5	530.5	531.7	205	205															
20	[18] p.100	En40B (27)	0.26	0.55	0.21	3 34	0.25	0.54	75	95	607.1	607.6	360	361	90	[1]	1Mn	0.47	1.02	0.34				982	10	4.3	556	310	317
30	[18] p.101	En40D(27) En100(30)	0.40	1 34	0.21	0.53	1.03	0.22	6	80	549.0	548.2	290	303	91	[1]	3Mn	0.47	3.33	0.26				982	10	7.3	501	230	238
31	[10] p.101	En110 (32)	0.44	0.58	0.23	1.26	1 40	0.11	75	74	545.7	543.5	300	297	92	[1]	5Mn	0.44	4.87	0.29				982	10	9.3	473	188	197
32	[18] p 100	En110 (32)	0.39	0.62	0.23	1.11	1.44	0.18	7.5	7.8	559.0	557.4	320	315	93	[1]	1Si	0.47	0.40	1.06				982	15	4.1	570	321	334
33	[18] p 100	En23 (35)	0.32	0.61	0.28	0.63	3.22	0.22	7	82	547.6	548.0	310	314	94	[1]	1Ni	0.45	0.36	0.31		1.16		927	30	4.0	557	310	329
34	[18] p.109	En39B (45)	0.15	0.38	0.20	1.16	4.33	0.17	7	7.6	581.0	579.6	365	362	95	[1]	3Ni	0.46	0.34	0.28		3.36		927	30	4.6	514	282	286
35	[18] p.110	En39B (0.6C)	0.56	0.47	0.18	1.16	4.25	0.18	8	8.1	458.4	459.7	195	206	96	[1]	5Ni	0.46	0.35	0.30		4.83		927	30	5.0	487	257	258
36	[18] p.96	En45	0.55	0.87	1.74	0.10	0.16	0.02	7.5	6.5	532.1	530.8	260	273	97	[1]	1Cr	0.50	0 33	0.27	0 08			1260	3	1.2	559	313	320
37	[18] p.96	En11	0.59	0.66	0.34	0.65	0.17	0.02	8	6.9	524.8	523.5	280	271	98	[1]	1Mo	0.50	_					•	3	2.5	568	330	323
38	[18] p.106	En36 (0.70C)	0.70	0.35	0.16	0.96	3.24	0.06	8.5	7.3	440.1	441.1	185	183	99	[1]	3Mo	0.49	D 2	ave	nn	110	<u>а</u> дд		3	7.5	580	305	308
	-														100	[1]	3Ni-1Cr	0.46		x y J'		1		/	5	3.1	509	260	272
39	[18] p.380	1-3/4 Mn	0.30	1.80	0.15				7	7.1		587.5	350	350	101	[1]	1 Mn	0.47							30	5.8	556	310	316
40	[18] p.381	1-1/2 Mn	0.36	1.50	0.20				7.5	7.0		577.2	330	337	102	[1]	1 Mn	0.47	1.02	0.34				982	10	4.3	556	310	317
41	[18] p.382	1-3/4 Mn	0.38	1.80	0.25				7	7.3		564.1	325	320	103	[1]	1 Mn	0.47	1.02	0.34				1093	10	2.5	556	313	319
42	[18] p.382	1-3/4 Mn	0.46	1.80	0.15				6.5	7.5		541.0	295	292	104	[1]	3Ni	0.46	0.34	0.28		3.36		927	30	4.6	514	282	286
43	[18] p.384	1-3/4 Si Mn	0.40	0.85	1.75				9	6.8		578.4	340	329	105	[1]	3Ni	0.46	0.34	0.28		3.36		982	20	3.8	514	282	287
44	[18] p.385	2 Si Mn	0.54	0.85	1.90	0.10	0.16	0.02	7.5	7.3		533.9	285	276	106	[1]	3Ni	0.46	0.34	0.28		3.36		1093	10	2.5	514	280	288
45	[18] p.385	2 Si Mn	0.59	0.85	1.90				7	7.1		522.8	260	263	107	[1]	4042	0.43	0.90	0.23	0.27	0.23	0.26	816	10	8.6	566	321	320
46	[18] p.387	1 Ni	0.43	0.80	0.20	0.07	0.85		7.5	6.4		558.0	335	321	108	[1]	4063	0.64	0.85	0.29	0.24	0.19	0.27	816	10	8.9	507	230	248
4/	[18] p.388	3 Ni	0.30	0.51	0.32	0.07	3.03		1.5	6.8		562.0	340	338	109	[1]	8442	0.40	1.43	0.22	0.29	0.23	0.32	816	10	9.6	562	316	310
48	[18] p.389	3-1/2 N1	0.33	_	_							540.2	315	309	110	[1]	8949	0.49	1.01	0.20	0.56	0.54	0.38	816	10	9.6	539	280	282
49	[18] p.390	3-1/2 N1	0.40			dia	gra	m	5			522.1	280	284	111	[1]	8749	0.52	0.85	0.21	0.50	0.53	0.26	816	10	9.0	535	282	280
50	[10] p.394	1/2 Cr	0.40	•••			0.6					591.9	225	340	112	[1]	4142	0.41	0.86	0.30	1.06	0.11	0.23	816	10	9.5	571	310	318
52	[18] p.394	1/2 Cr	0.59			10	~~	^				524.4	260	273	113	[1]	4160	0.61	0.59	0.24	0.94	0.16	0.33	857	10	8.4	519	260	259
52	[10] p.595 [18] n 402	1/2 CI 1-1/2 Mn Mo	0.59	Δ٩	SM	(1	yy'	1)				524.4 603.2	370	213	114	[1]	4342	0.42	0.68	0.18	0.81	1.74	0.29	816	10	9.5	544	277	295
54	[10] p.403 [18] n 403	1-1/2 Mn Mo	0.27		, , , ,	۱		-,				594.4	355	356	115	[1]	special	0.30	1.63	0.49	0.44	0.00	0.33	899	10	8.2	590	346	344
55	[18] n 404	1-1/2 Mn Mo	0.30	1.50	0.18			0.27	7.5	78		589.8	350	350															
56	[18] p.404	1-1/2 Mn Mo	0.35	1.55	0.20			0.28	7.5	8.0		579.9	335	337	116	[19]	В	0.40	0.47	0.02	0.00	174	0.00	000	16	7.4	558	311	323
57	[18] p.405	1-1/2 Mn Mo	0.37	1.50	0.18			0.27	8	7.9		575.3	330	331	117	[19]	С	0.0	_			1.	~	- \		1.7	499	246	251
58	[18] p.405	1-1/2 Mn Mo	0.38	1.50	0.25			0.45	8	8.5		572.8	330	326	118	[19]	D	0.1	K٥١	พเล	nd	(1)	YΔF)		1.9	444	185	184
59	[18] p.443	4 Ni Cr Mo	0.15	0.40	0.25	1.15	4.10	0.20	8	9.3		583.4	365	364	119	[19]	5	0.:				۱	5-40	· I		1.2	596	354	359
60	[18] p.443	4 Ni Cr Mo	0.30	0.60	0.25	1.25	4.10	0.30	7	10.2		534.8	300	298	120	[19]	2	0.50	0.52	0.00	1.40	0.20		045	1.5	1.5	534	285	282
61	[18] p.443	4 Ni Cr Mo	0.34	0.50	0.20	1.80	4.00	0.35	9	10.0		524.5	275	278	121	[19]	6	0.78	0.33	0.02	1.42	0.27		1066	15	3.3	470	210	211

Validation of the new M_s model

$$\Delta G_{\rm c} = K_1 + W_{\mu} + \frac{K_{\rm HP}}{\sqrt{D^{\gamma}}} + K_{\rm C} \exp\left(-\frac{6D^{\gamma}}{D_{\rm C}}\right)$$

 $\mathbf{K}_{1} = 1015 \text{ J/mol} \qquad W_{\mu} = 670x_{C}^{0.5} + \sqrt{(195x_{Mn}^{0.5})^{2} + (140x_{Si}^{0.5})^{2} + (170x_{Cr}^{0.5})^{2} + (5x_{Ni}^{0.5})^{2} + (205x_{Mo}^{0.5})^{2}}$

$$K_{HP} = 350 \text{ J}\mu\text{m}^{0.5}/\text{mol}$$

 $K_{C} = 370 \text{ J}/\text{mol}$
 $D_{C} = 11 \ \mu\text{m}$

Alloying ranges tested: 0.1 - 0.7 C 0 - 3 Mn 0 - 2 Si 0 - 3 Cr 0 - 5 Ni 0 - 1 Mo

Benckmarking to other models

Table: standard errors associated with different models tested against alloys 1-121

Over	alloys 90-115: Payson data													
Medel	σ (°C)		- (0)	7) 1										
wodei		σ (°C) evaluated for various datasets (alloy series)												
	1–121	1–6	7–16	17–38	39–61	62–89	90–115	116–121						
Payson (1944)	17	37	15	22	13	18	9	16						
Carapella (1944)	23	48	14	23	16	31	12	21						
Nehrenberg (1946)	14	25	6	15	11	12	17	21						
Grange (1946)	19	35	7	26	16	15	18	20						
Steven (1956)	18	20	6	15	9	22	18	39						
Andrews (1965)	11	16	5	10	10	12	10	23						
Eldis (1977)	16	32	13	16	14	14	16	20						
Van Bohemen (2012)	11	20	5	7	9	13	10	9						
JMatPro 6.1	14	19	15	12	10	12	18	7						
This work	7	13	6	7	6	6	9	6						

Thank you for your attention!

Do you have any questions?