Thermodynamic database development based on ab initio calculations: challenges and opportunities

M. to Baben, C. Kattuputhur, K. Hack,
GTT-Technologies
Outline

• Thermodynamic database content
• Database development
 – Based on experiments
 – Based on ab initio
• Challenges
• Opportunities
Thermodynamic database content

- ΔH^{298}
- S^{298}
- $C_p(T)$, $G(T)$
- μ
- T_C
Thermodynamic database content

- ΔH^{298}
- S^{298}
- $C_p(T)$
- $G(T)$
- μ
- T_C
- ρ
- $\alpha(T)$
- $\kappa(T)$
- $B'(T)$
Thermodynamic database content

- ΔH^{298}
- S^{298}
- $C_p(T)$
- μ
- T_c
- ρ
- $\alpha(T)$
- $\kappa(T)$
- $B'(T)$
- $L(T)$
- $G(T, p)$
- $G(T, p, X_i)$
Outline

• Thermodynamic database content
• Database development
 – Based on experiments
 – Based on ab initio
• Challenges
• Opportunities
Database development based on experiment

• Ideal: The following properties are measured:
 – binary phase diagram
 – enthalpies of (trans-)formation of the compounds
 – enthalpies of mixing and constituent activities of solutions as f(T)
 – heat capacities of compounds and solutions
 – crystal structures, especially for complex solutions
 – density as f(T)
 – elastic properties as f(T)

• Real: Few of the properties are measured.
Database development based on experiment

• Ideal: The following properties are measured:
 – binary phase diagram
 – enthalpies of (trans-)formation of the compounds
 – enthalpies of mixing and constituent activities of solutions as f(T)
 – heat capacities of compounds and solutions
 – crystal structures, especially for complex solutions
 – density as f(T)
 – elastic properties as f(T)

• Real: Experimental error bars can be evaluated to fit the thermodynamic properties to all measurements

 Thermodynamic properties are fitted to all available measurements
Database development based on experiment

• Ideal:
 – binary phase diagram
 – enthalpies of (trans-)formation of the compounds
 – enthalpies of mixing and constituent activities of solutions as \(f(T) \)
 – heat capacities of compounds and solutions
 – crystal structures, especially for complex solutions
 – density as \(f(T) \)
 – elastic properties as \(f(T) \)

• Real:
 Experimental error bars can be evaluated to fit the thermodynamic properties to all measurements

2nd step: Consistency checks of binary and ternary systems!

Thermodynamic properties are fitted to all available measurements
Outline

• Thermodynamic database content
• Database development
 – Based on experiments
 – Based on ab initio
• Challenges
• Opportunities
Database development based on ab initio

- Ideal: The following properties are calculated:
 - binary phase diagram
 - enthalpies of formation of the compounds
 - enthalpies of mixing of solutions as f(T)
 - heat capacities of compounds and solutions
 - crystal structures, especially for complex solutions
 - density as f(T)
 - elastic properties as f(T)
- Real: Most of these properties can be used!
Database development based on ab initio

• Ideal: The following properties are calculated:
 – binary phase diagram
 – enthalpies of formation of the compounds
 – enthalpies of mixing of solutions as f(T)
 – heat capacities of compounds and solutions
 – crystal structures, especially for complex solutions
 – density as f(T)
 – elastic properties as f(T)

• Real: Most of these properties can be used!

→ materialsproject.org, oqmd.org, aflowlib.org, nomad-coe.eu
Outline

• Thermodynamic database content
• Database development
 – Based on experiments
 – Based on ab initio
• Challenges
• Opportunities
Challenge: $\Delta H_{f,\text{experiment}} \leftrightarrow \Delta H_{f,\text{ab initio}}$

Publications including “lattice stability”
Challenge: $\Delta H_{f,\text{experiment}} \leftrightarrow \Delta H_{f,\text{ab initio}}$

Publications including “lattice stability”

- Kaufman et al. (1963), Lattice Stability of metals .3. Iron
- Dinsdale (1991), SGTE data for pure elements
- Wang et al. (2004), Ab initio lattice stability in comparison with CALPHAD lattice stability
- Kirklin et al. (2015), The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies
Challenge: $\Delta H_{f,\text{experiment}} \leftrightarrow \Delta H_{f,\text{ab initio}}$

Raw data:

$\Delta H_{f,\text{OQMD}} - \Delta H_{f,\text{SGTE}}$ [eV/atom]

Mean average error is ~ 13 kJ/mol atoms

Kirklin et al. (2015), The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies

(1 eV/atom ≈ 100 kJ/mol atoms)
Challenge: $\Delta H_{f,\text{experiment}} \leftrightarrow \Delta H_{f,\text{ab initio}}$

Linear correction for elements:

Kirklin et al. (2015), The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies

(1 eV/atom ≈ 100 kJ/mol atoms)

$\Delta H_{f,\text{OQMD}} - \Delta H_{f,\text{SGTE}}$ [eV/atom]

Mean average error is ~9 kJ/mol atoms
Challenge: \(\Delta H_{f,\text{experiment}} \leftrightarrow \Delta H_{f,\text{ab initio}} \)

WHY?

Linear correction for elements:

- Iodides
- Bromides
- Oxides
Challenge: “High“ temperatures
Challenge: “High” temperatures

Ab initio calculations are mostly done at 0K.
How to extrapolate to room temperature and above?
→ Einstein model
→ Debye model
 → $\propto C_p = \text{const}$
→ Other models for $T > \theta_D$ are computationally expensive!

FCC-Al: $\theta_D = 267$ K
Challenge: Liquid and gas phases

• There is currently no high-throughput solution in ab initio calculations…
Outline

• Thermodynamic database content
• Database development
 – Based on experiments
 – Based on ab initio
• Challenges
• Opportunities
Opportunities: Unstable allotropes

Different allotropes are often modelled with the same $C_p(T)$-function.
Different allotropes are often modelled with the same $C_p(T)$-function.

There is an excellent agreement of $C_p,\text{FCC-Al}$ between SGTE and ab initio calculations at $298 \, \text{K} \approx \theta_D (=267\,\text{K})$.

$C_p,\text{BCC-Al}$ should be slightly higher!
Opportunities: Unstable allotropes

Different allotropes are often modelled with the same $C_p(T)$-function.

There is an excellent agreement of $C_p,FCC-Al$ between SGTE and ab initio calculations at 298 K $\approx \theta_D$ (=267K).

$C_p,BCC-Al$ should be slightly higher!

There is a disagreement of $S,FCC-Al$ between SGTE and ab initio calculations at 298 K.

Ab initio calculations can help improving properties that are hard to measure!
Opportunities: Enthalpies at low T

- It is impossible to measure enthalpies at low temperatures due to kinetic constraints.

Opportunities: Enthalpies at low T

• It is impossible to measure enthalpies at low temperatures due to kinetic constraints.

“The predicted critical temperature is very close to the lower limit of the temperature range of currently known experimental phase diagrams.”

Opportunities: Navigating Chemical Compound Space

Today: SGTE Solution database contains ~1500 phases. That allows description of

- 577 binary systems,
- 141 ternary systems,
- 15 higher order systems
Opportunities: Navigating Chemical Compound Space

Today: SGTE Solution database contains ~1500 phases. That allows description of

- 577 binary systems,
- 141 ternary systems,
- 15 higher order systems

~70 non-radioactive, non-noble gas elements

\[70 \times 69 = 4830 \text{ binary systems} \]
\[70 \times 69 \times 68 = 328440 \text{ ternary systems} \]
Opportunities: Navigating Chemical Compound Space

Today: SGTE Solution database contains ~1500 phases. That allows description of:

- 577 binary systems,
- 141 ternary systems,
- 15 higher order systems

~70 non-radioactive, non-noble gas elements

\[
\begin{align*}
&70 \times 69 = 4830 \text{ binary systems} \\
&70 \times 69 \times 68 = 328440 \text{ ternary systems}
\end{align*}
\]
Thank you very much for your attention!