Thermodynamic database development based on ab initio calculations: challenges and opportunities

M. to Baben, C. Kattuputhur, K. Hack, GTT-Technologies

Outline

- Thermodynamic database content
- Database development
 - Based on experiments
 - Based on ab initio
- Challenges
- Opportunities

Thermodynamic database content

- ΔH²⁹⁸
- S²⁹⁸
- C_p(T) **G(T)**
- µ
- T_C

Energy: Joules Pressure: a	m Al	– 🗆 X
<u>File E</u> dit <u>U</u> nits <u>V</u> iew <u>T</u> o	ols View <u>D</u> ata <u>H</u> elp	
Formula		
⊢r 🗅 FTliteBASE	S1 properties • Heat of form. + Entropy • O Heat + Temperature	of transf.
⊡- <mark>∠ S1</mark> -Cp 700	Form. of S1	K)) 35571
-Cp 3900 ⊡-∠ S2	Phase Name Reference no. De fcc_A1 501 2.6	nsity g/cc 9822
⊡ <mark> </mark> S3	Extended properties (optional)	
⊡⊸L∠ S4	Birch-Murnaghan	
⊡ ⊑ 000 ⊡ ⊑ S6	Therm. expans. (/K) Compressibility (/bar) Bulk r	nod. deriv.
⊡	7.6228E-8 T T	
⊡		(1-10)//(1710)
	0.00857216 /I ² T ³	
r 🛱 FTmiscBASE	Magnetic	
r 🗅 FToxidBASE	Moment (D) Temperature P fac © Curie K © 0.2 © Neel K	tor 28 40
🚽 r 🗅 FTsaltBASE		
FactSage 7.1 C:\F/	CTSAGE71\FACTDATA\FTLITE60BASE.CDB (v7.10) 1410 comp	ounds read-only

Thermodynamic database content

•	ΛH ²⁹⁸	Energy: Joules Pressure: atm Al	- [×						
_	O 208	<u>File Edit Units View Tools ViewData H</u> elp									
•	5290										
•	C _p (T) G(T)	Al Form. of S1 → Al → Al → Cp 700	S1 properties Heat of form. + Entropy C Heat + Temperature of transf. Form. of S1 <u>AH 298 (Joules)</u> S298 (J/(mol K))								
•	μ	Cp 933 Cp 3900 Phase Name Reference no.	35571 ensity g/cc								
•	T _C	B S2 Extended properties (optional)	39822]							
	0	Birch-Murnaghan									
•	ρ	Therm. expans. (/K) Compressibility (/bar) Bulk r	mod. deriv.								
	$\alpha(\mathbf{T})$	⊕∠ S7									
•	u(1) G(Tp)	⊕ <u>L</u> S8 7.6228E-8 T T	(T-	T0)In(T/T0)						
•	К(Т)	$\square \square $									
•	B'(T)	r C FTOxCNBASE r C FToxidBASE r C FTpulpBASE r C FTsaltBASE ↓ Magnetic Moment (D) Temperature P fac C Ourie K C O. C Neel K C O.	Magnetic Moment (D) Curie Neel K C 0.40								
		FactSage 7.1 C:\FACTSAGE71\FACTDATA\FTLITE60BASE.CDB (v7.10) 1410 com	pounds read	-only							

Thermodynamic database content

- ΔH²⁹⁸
- S²⁹⁸
- C_p(T) **G(T)**
- µ
- T_C
- ρ
- α(T) (T) G(T,p)
- K(T)
- B'(T)
- L(T) **G(T,p,X**_i)

Outline

- Thermodynamic database content
- Database development
 - Based on experiments
 - Based on ab initio
- Challenges
- Opportunities

Database development based on experiment

- Ideal: The following properties are measured:
 - binary phase diagram
 - enthalpies of (trans-)formation of the compounds
 - enthalpies of mixing and constituent activities of solutions as f(T)
 - heat capacities of compounds and solutions
 - crystal structures, especially for complex solutions
 - density as f(T)
 - elastic properties as f(T)
- Real: Few of the properties are measured.

Database development based on experiment

- Experimental error bars can be evaluated to fit the
- Ideal: thermodynamic properties to all measurements
 - binary phase diagram
 - enthalpies of (trans-)formation of the compounds
 - enthalpies of mixing and constituent activities of solutions as f(T)
 - heat capacities of compounds and solutions
 - crystal structures, especially for complex solutions
 - density as f(T)
 - elas Thermodynamic properties are fitted to all available measurements

Database development based on experiment

- Experimental error bars can be evaluated to fit the
- Ideal: Lapornion and on of bare bare bare bare by all all the second and the internation of the second and the second all measurements to all measurements to all measurements and the second all measurements and the second all measurements are second as the second as the second all measurements are second as the second
 - binary phase diagram
 - enthalpies of (trans-)formation of the compounds
 - enthalpies of mixing and constituent activities of solutions as f(T)
 - heat capaciti
 - crystal struct
 - density as f(T)

- 2nd step: Consistency checks of binary and ternary systems!
- elas Thermodynamic properties are fitted to all available measurements

Outline

- Thermodynamic database content
- Database development
 - Based on experiments
 - Based on ab initio
- Challenges
- Opportunities

Database development based on ab initio

- Ideal: The following properties are calculated:
 - binary phase diagram
 - enthalpies of formation of the compounds
 - enthalpies of mixing of solutions as f(T)
 - heat capacities of compounds and solutions
 - crystal structures, especially for complex solutions
 - density as f(T)
 - elastic properties as f(T)
- Real: Most of these properties can be used!

Database development based on ab initio

- Ideal: The following properties are calculated:
 - binary phase diagram
 - enthalpies of formation of the compounds
 - enthalpies of mixing of solutions as f(T)
 - heat capacities of compounds and solutions
 - crystal structures, especially for complex solutions
 - density as f(T)
 - elastic properties as f(T)
- Real: Most of these properties can be used!

→ materialsproject.org, oqmd.org, aflowlib.org, nomad-coe.eu

Outline

- Thermodynamic database content
- Database development
 - Based on experiments
 - Based on ab initio
- Challenges
- Opportunities

GTT-Technologies

Challenge: $\Delta H_{f,experiment} \leftrightarrow \Delta H_{f,ab initio}$

Publications including "lattice stability"

GTT-Technologies

Challenge: $\Delta H_{f,experiment} \leftrightarrow \Delta H_{f,ab initio}$

Publications including "lattice stability"

Challenge: $\Delta H_{f,experiment} \leftrightarrow \Delta H_{f,ab initio}$

Mean average error is ~13 kJ/mol atoms

Kirklin et al. (2015), The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies

(1 eV/atom ≈ 100 kJ/mol atoms)

Challenge: $\Delta H_{f,experiment} \leftrightarrow \Delta H_{f,ab initio}$

Linear correction for elements:

Mean average error is ~9 kJ/mol atoms

Kirklin et al. (2015), The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies

(1 eV/atom \approx 100 kJ/mol atoms)

Challenge: $\Delta H_{f,experiment} \leftrightarrow \Delta H_{f,ab initio}$

Linear correction for elements:

Challenge: "High" temperatures

🕼 Energy: Joules Press	re: atm Al —		×
<u>F</u> ile <u>E</u> dit <u>U</u> nits <u>V</u> iew	<u>T</u> ools View <u>D</u> ata <u>H</u> elp		
Formula			
r Cp 3900 r C S1 r S2 r C S1 r S2 r S1 r S2 r S1 r S2 r S1 r S2 r S2 r S2 r S3 r S2 r S3 r S2 r S3 r S2 r S3 r S5 r S3 r S5 r S3 r S5 r S3 r S5 r S3 r S5 r S5	Cp expression for S1 AH 298: 0 J/mol S 298: 28.2999967235571 J/(mol K) from 298.150 K to 700.000 K H Cp(T) = 24.3671976 T^ 0.00 0.003769324 T^ 1.00 G Edit -148184 T^ -2.00 5.265984E-6 T^ 2.00 T^ 1 T^		
FactSage 7.1	C:\FACTSAGE71\FACTDATA\FTLITE60BASE.CDB (v7.10) 1410 compound	s read-only	1

Challenge: "High" temperatures

Ab initio calculations are mostly done at 0K.

How to extrapolate to room temperature and above?

- → Einstein model
- \rightarrow Debye model
 - \rightarrow X C_p = const X
- → Other models for $T > \theta_D$ are computationally expensive!

Challenge: Liquid and gas phases

• There is currently no high-throughput solution in ab initio calculations...

Outline

- Thermodynamic database content
- Database development
 - Based on experiments
 - Based on ab initio
- Challenges
- Opportunities

Opportunities: Unstable allotropes

Different allotropes are often modelled with the same $C_p(T)$ -function.

Opportunities: Unstable allotropes

Different allotropes are often modelled with the same $C_p(T)$ -function.

There is an excellent agreement of $C_{p,FCC-AI}$ between SGTE and ab initio calculations at 298 K $\approx \theta_D$ (=267K).

C_{p,BCC-Al} should be slightly higher!

Opportunities: Unstable allotropes

Different allotropes are often modelled with the same $C_p(T)$ -function.

There is an excellent agreement of $C_{p,FCC-AI}$ between SGTE and ab initio calculations at 298 K $\approx \theta_D$ (=267K).

C_{p,BCC-Al} should be slightly higher!

There is a disagreement of S_{FCC-AI} between SGTE and ab initio calculations at 298 K.

Ab initio calculations can help improving properties that are hard to measure!

-SGTE_FCC —SGTE_BCC

Opportunities: Enthalpies at low T

• It is impossible to measure enthalpies at low temperatures due to kinetic constraints.

Barzilai, Acta Materialia 120 (2016) 255.

Opportunities: Enthalpies at low T

• It is impossible to measure enthalpies at low temperatures due to kinetic constraints.

"The predicted critical temperature is very close to the lower limit of the temperature range of currently known experimental phase diagrams."

Barzilai, Acta Materialia 120 (2016) 255.

Opportunities: Navigating Chemical Compound Space

Today: SGTE Solution database contains ~1500 phases. That allows description of

577 binary systems,

141 ternary systems,

15 higher order systems

Opportunities: Navigating Chemical Compound Space

Today: SGTE Solution database contains ~1500 phases. That allows description of

577 binary systems,

Н	141 ternary systems,															Не	
Li	Ве	^{Be} 15 higher order systems									В	С	Ν	0	F	Ne	
Na	Mg	i o nigrici oraci systems								AI	Si	Р	S	CI	Ar		
κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sc	Sb	Те	Т	Хе
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds								

~70 non-radioactive, non-noble gas elements \rightarrow 70*69 = 4830 binary systems \rightarrow 70*69*68 = 328440 ternary systems

He Ne

0

Opportunities: Navigating Chemical Compound Space

Today: SGTE Solution database contains ~1500 phases. That allows description of

577 binary systems,

Н		141 ternary systems,			
Li	Ве	15 higher order systems	В	С	Ν
Na	Mg	ro nighter erder eyeterne	AI	Si	Р

materialsproject.org, oqmd.org, aflowlib.org, nomad-coe.eu $69'623 + 471'857 + 1'672'887 \rightarrow 17'150'125$ compounds (for most of them only ΔH_f^{0K})

> ~70 non-radioctive, non-noble gas elements \rightarrow 70*69 = 4830 binary systems \rightarrow 70*69*68 = 328440 ternary systems

GTT-Technologies

Thank you very much for your attention!

