

GTT Annual Users' Meeting 2017, June 28 - June 30

Database development for the HotVeGas project

Elena Yazhenskikh¹, Tatjana Jantzen², Klaus Hack², Michael Müller¹

¹ Forschungszentrum Jülich, IEK-2 (Microstructure and properties of materials), Germany
 ² GTT-Technologies, Herzogenrath, Germany

Contents

>Introduction

► Re-assessment of binary systems Alk₂O-P₂O₅ (Alk=K, Na)

≻Two-alkali system Na₂O-K₂O-P₂O₅

≻Re-assessment of ternary systems Alk₂O-MeO-P₂O₅ (Me=Ca, Mg, Zn)

K₂O-CaO-P₂O₅
K₂O-MgO-P₂O₅
K₂O-ZnO-P₂O₅
Na₂O-CaO-P₂O₅
Na₂O-MgO-P₂O₅
Na₂O-ZnO-P₂O₅
Conclusions and outlook

Database update

Oxide system

Oxide database	Slag atlas (12.0) March 2017
Binary systems	130
Ternary systems	110
Quaternaries	7
Slag components	166
Solid solution phases	104
Stoichiometric compounds	661

HOTVEGAS Hochtemperaturvergasung und Gasreinigung

Data revision: K₂O-P₂O₅

Revision of the binary data on the alkali-phosphor oxides systems due to new experimental information:

- > Cp (DSC), ΔH_{tr} of pure AlkPOx along with phase equilibria (DTA/TG)
- > properties from literature: ΔH_{mix} of liquid, Q-species
- Structure units distribution is a basis of viscosity modelling

Na₂O

SiO,

Al,O3

ZnO

MgO

18 July 2017

Description of the system

Phase	Model	Description
Liquid	Modified associate species	$\begin{array}{l} \text{Alk}_2\text{O}, \text{P}_2\text{O}_5 \\ \text{Alk}_2\text{O}:\text{P}_2\text{O}_5 = 1:1 \text{AlkPO}_3 \\ \text{Alk}_2\text{O}:\text{P}_2\text{O}_5 = 2:1 \text{Alk}_4\text{P}_2\text{O}_7 \ ^*1/3 \\ \text{Alk}_2\text{O}:\text{P}_2\text{O}_5 = 3:1 \text{Alk}_3\text{PO}_4 \ ^*1/2 \end{array}$
KP_H, KPO ₃ (HT)-NaPO ₃ (HT)	Sublattice model	(<u>K¹⁺</u> , Na ¹⁺)(P ⁵⁺)(O ²⁻) ₃
NP_H, NaPO ₃ (HT)-KPO ₃ (HT)	Sublattice model	(K ¹⁺ , <u>Na¹⁺</u>)(P ⁵⁺)(O ²⁻) ₃
KN2P, Na ₄ P ₂ O ₇ (HT)-K ₄ P ₂ O ₇ (HT)	Sublattice model	$(K_2O, Na_2O)_2(P_2O_5)$
N3PH, Na ₂ PO ₄ -K ₃ PO ₄ , ht-phase	Sublattice model	$(Na_2O,K_2O)_2(P_2O_5)(Na_2O):$ 2N3P+K ₄ Na ₂ P ₂ O ₈
K3PH, K ₂ PO ₄ -Na ₃ PO ₄ , ht-phase	Sublattice model	$(K_2O)_2(P_2O_5)(K_2O, Na_2O):$ 2K3P+K ₄ Na ₂ P ₂ O ₈

18 July 2017

Database update Oxide system

After re-assessment of the binary systems all ternary systems have to be considered taking into account the solubility in solid state

Description of the system

The species with composition $\text{KCa}(\text{PO}_3)_3$ in the non-ideal associate solution were added in order to describe the liquid phase

Name	Composition	Tm, calc. (exp.), °C	Liquid species
СКР	K ₂ CaP ₂ O ₇	1149 (1143)	
C2KP3	KCa(PO ₃) ₃	850 (850)	KCaP ₃ O ₉ /2.5
С2КР	KCaPO ₄	1559 (1560)	
	*K ₆ CaP ₂ O ₉	1745 (1750)	
	*K ₄ CaP ₂ O ₈	1647 (1645)	
* - solid solution component			

 $(\underline{K}_2)_2(\underline{K}_2, Ca, K_2CaO, Na_2, Mg, K_2MgO)_1 (PO_4)_2$ solid solutions for HT, MT, LT modifications $(\underline{K}_2\underline{O})_2(\underline{P}_2O_5)(\underline{K}_2\underline{O}, CaO, K_2CaO_2, Na_2O, MgO, K_2MgO_2)$

K,0

Quasi-binary section K₄P₂O₇-Ca₂P₂O₇

Sections CaO-K3P, CaO-KP, CP-KP

Sub-solidus equilibria and liquidus surface

Description of the system

Name	Composition	Tm, calc. (exp.), °C	Liquid species
R	KMgPO ₄	1520 (1520)	KMgPO ₄ /1.5
J	KMg ₄ (PO ₄) ₃	1169 (1175)	
W	$K_4Mg_4P_6O_{21}$	790 (792)	
T1	K ₂ MgP ₂ O ₇	733 (736)	
T2	*K ₄ Mg(PO ₄) ₂	1375 (1374)	
Т3	*K ₆ MgP ₂ O ₉	1570 (1570)	
B1	KMg(PO ₃) ₃	904 (906)	KMgP ₃ O ₉ /2.5
B2	K ₂ Mg(PO ₃) ₄	734 (730)	
* - solid solution component			

 $(\underline{K}_2)_2(\underline{K}_2, Ca, K_2CaO, Na_2, Mg, K_2MgO)_1 (PO_4)_2$

solid solutions for HT, MT, LT modifications

 $(\underline{K_2O})_2(P_2O_5)(\underline{K_2O}, CaO, K_2CaO_2, Na_2O, MgO, K_2MgO_2)$

Quasi-binary sections

Sub-solidus equilibria and liquidus surface

Description of the system

The species with composition D in the non-ideal associate solution were added in order to describe the liquid phase.

Name	Composition	Tm, calc. (exp.), °C	Liquid species
Α	$K_2Zn(PO_3)_4$	625 (625)	
В	KZn ₄ (PO ₃) ₃	964 (965)	
С	KZn(PO ₃) ₃	632 (632)	
D	KZnPO ₄	1346 (≈1354)	KZnPO ₄ /1.5
E	K ₂ ZnP ₂ O ₇	683 (683)	
F	$K_2Zn_3(P_2O_7)_2$	800 (800)	

The system K_2O -ZnO- P_2O_5 Quasi-binary section KPO₃-ZnP₂O₆

M. T. Averbuch-Pouchot, C. Martin, M. A. Rakotomahanina-Rolaisoa, and A. Durif, Bull. Soc. Fr. Mineral. Cristallogr., 93 [3] 282-286 (1970).

E.L. Krivovjasov, K.K. Palkina, N.K. Voskresenskaja, Dokl. Akad. Nauk, UdSSR, Chem., 174 [3] 610-613 (1967)

ZnP₂O₆/(KPO₃+ZnP₂O₆) (mol/mol)

Mitglied der Helmholtz-Gemeinschaft

1

JÜLICH

Mitglied der Helmholtz-Gemeinschaft

Sections KPO₃-ZnO and B-ZnO

Sub-solidus and liquidus surface

JÜLICH FORSCHUNGSZENTRUM

Na₂O

Description of the system

Name	Composition	Tm, calc. (exp.), °C	Liquid species
CNP	Na ₂ CaP ₂ O ₇	835 (814)	
C2NP	NaCaPO ₄	1830 (1830)	NaCaPO ₄ /1.5
CN2P	Na ₄ CaP ₂ O ₈	1756 (1750)	Na ₄ CaP ₂ O ₈ /3.5
CN2P3	Na ₄ CaP ₆ O ₁₈	734 (733)	
	*Na ₆ CaP ₂ O ₉	1800 (1800)	
* - solid solution component			

 $\label{eq:solutions} \begin{array}{l} (\underline{\text{Na}}_2, \, \text{K}_2, \, \text{Zn})_2(\underline{\text{Na}}_2, \, \text{Na}_2\text{CaO}, \, \text{Mg}, \, \text{Na}_2\text{MgO})_1 \, (\text{PO}_4)_2 \\ \text{solid solutions for HT, MT, LT modifications} \\ (\underline{\text{Na}}_2 \underline{\text{O}}, \, K_2 \underline{\text{O}}, \, Zn \underline{\text{O}})_2(\underline{\text{P}}_2 \underline{\text{O}}_5)(\underline{\text{Na}}_2 \underline{\text{O}}, \, \underline{\text{Na}}_2 \underline{\text{CaO}}_2, \, \underline{\text{MgO}}, \, \underline{\text{Na}}_2 \underline{\text{MgO}}_2) \end{array}$

The system Na₂O-CaO-P₂O₅ **Quasi-binary sections**

J. Berak and T. Znamierowska, Rocz. Chem., 46 [11] 1921-1929 (1972).

Description of the system

Name	Composition	Tm, calc. (exp.), °C	Liquid species
R	NaMgPO ₄	968 (960)	
T2	*Na ₄ Mg(PO ₄) ₂	1662 (1655)	Na ₄ Mg(PO ₄) ₂ /3.5
Т3	*Na ₆ MgP ₂ O ₉	1665 (1665)	
B1	NaMg(PO ₃) ₃	941 (942)	
B2	Na ₂ Mg(PO ₃) ₄	916 (916)	
B3	Na ₄ Mg(PO ₃) ₆	785 (784)	
F1	$Na_8Mg_6(P_2O_7)_5$	807 (808)	Na ₈ Mg ₆ (P ₂ O ₇) ₅ /12
J	NaMg ₄ (PO ₄) ₃	1159 (1155)	
* - solid solution	component	1	

 $(Na_2, K_2, Zn)_2(Na_2, Na_2CaO, Mg, Na_2MgO)_1 (PO_4)_2$ solid solutions for HT, MT, LT modifications

 $(\underline{\text{Na}_2\text{O}}, \text{K}_2\text{O}, \text{ZnO})_2(P_2\text{O}_5)(\underline{\text{Na}_2\text{O}}, \text{Na}_2\text{CaO}_2, \underline{\text{MgO}}, \underline{\text{Na}_2\text{MgO}}_2)$

Sections NP-MP, N3P-MgO, N3P-M3P

T. Podhajska-Kazmierczak and T. Znamierowska, Pol. J. Chem., 65 [7-8] 1121-1125 (1991).

T.Podhajska-Kazmierczak, T.Znamierowska, Pol. J. Chem., 73 [2] 279-286 (1999).

Mitglied der Helmholtz-Gemeinschaft

Na₃PO₄ - MgO

GTT Annual Workshop, 2017

Description of the system

Name	Composition	Tm, calc. (exp.), °C	Liquid species
Α	Na ₂ ZnP ₂ O ₇	783 (782)	Na ₂ ZnP ₂ O ₇ *2.5
В	NaZnP ₃ O ₉	720 (720)	
С	NaZnPO ₄	1009 (1007)	
D	$Na_2Zn_5(PO_4)_4$	886 (888)	Na ₂ Zn ₅ (PO ₄) ₄ *5.5

 $(\underline{Na_2}, K_2, Zn)_2(\underline{Na_2}, Na_2CaO, Mg, Na_2MgO)_1 (PO_4)_2$ solid solution N3P-Z3P for HT modification $(\underline{Na_2O}, K_2O, ZnO)_2(P_2O_5)(\underline{Na_2O}, Na_2CaO_2, MgO, Na_2MgO_2)$

Sections N3P-Z3P, ZnO-D, ZnO-NP-ZP

Quasi-binary sections N2P-Z2P and NP-ZP

Sub-solidus equilibria and liquidus surface

L.N. Ji, J.B. Li, J. Luo, J.K. Liang, J.Y. Zhang, Y.H. Liu, G.H. Rao, J. Alloys Compd. 465 (2008) 436-441

Systems Alk₂O-MeO-P₂O₅

Conclusions

- Binary systems Alk₂O-P₂O₅ (Alk=Na, K) have been re-assessed taking into account the new experimental data
- All phases (slag, solid solutions based on AlkPO_x) in the ternary system with both alkalis have been added into the dataset
- All ternary compounds in the ternary systems $Alk_2O-MeO-P_2O_5$ (Alk=Na, K; Me=Ca, Mg, Zn) have been considered. The thermodynamic dataset including solubilities between Alk_3PO_4 - $Alk_4Me(PO_4)_2$ - $Alk_6MeP_2O_9$ allows the description the phase equilibria in the different sections
- The liquid phase in all subsystems was evaluated using non-ideal associate species model (two cations per species). The corresponding ternary species have been added into the liquid
- All systems (7 ternaries) in the framework of the system Na₂O-K₂O-CaO-MgO-ZnO-P₂O₅ were assessed using experimental phase diagram information. The quasi-binary sections and liquidus surfaces in the systems Alk₂O-MeO-P₂O₅ have been calculated using the corresponding data

On behalf of all co-authors: Thank you for your attention! Vielen Dank für Ihre Aufmerksamkeit! Благодарю за внимание!

GTT - TECHNOLOGIES

