Mitglied der Helmholtz-Gemeinschaft

Modelling viscosity of molten oxides (HotVeGas Part III)

29.06.2017 Guixuan Wu

IEK-2, Forschungszentrum Jülich GmbH, Germany

GTT Annual Users' Meeting 2017

Introduction & aims

- Improvement of the viscosity model for FeO_x-containing systems
- Further development of the viscosity model for P₂O₅-containing systems

The viscosity model

The local viscosity maximum in SiO₂–FeO_x

The local viscosity maximum in SiO₂–FeO_x

- the charge compensation of FeO⁻₂ and Fe²⁺
- the presence of Fe²⁺ in tetrahedral coordination

The local viscosity maximum in SiO₂–FeO_x JÜLICH

Model parameters for SiO₂–FeO_x

Associate species	Model parameters		
	A _i	B _i	
FeSiO ₃ (original)	-3.48	109.57	
FeSiO ₃	-9.25	20.86	

The viscosity maximum in FeO_x–CaO

Associate species	Model parameters		
	A _i	B _i	
CaO (original)	-12.30	16.59	
CaO	-12.28	14.72	

P₂O₅-containing systems

Associate species	Structural units	Associate species	Structural units
P ₂ O ₅	PO _{2.5}	Na ₄ P ₂ O ₇	Na ₂ PO _{3.5}
P ₂ SiO ₇	P_2SiO_7	NaPO ₃	NaPO ₃
P ₄ Si ₃ O ₁₆	P _{4/3} SiO _{16/3}	Na ₃ PO ₄	Na ₃ PO ₄
AIPO ₄	AIPO ₄	KPO ₃	KPO ₃
CaP ₂ O ₆	Ca _{0.5} PO ₃	K ₃ PO ₄	K ₃ PO ₄
Ca ₂ P ₂ O ₇	CaPO _{3.5}	K ₄ P ₂ O ₇	K ₂ PO _{3.5}
Ca ₃ P ₂ O ₈	Ca _{1.5} PO ₄	FePO ₄	FePO ₄
Mg ₃ P ₂ O ₈	Mg _{1.5} PO ₄	Fe ₂ P ₂ O ₇	FePO _{3.5}
$Mg_2P_2O_7$	MgPO _{3.5}	FeP ₂ O ₆	Fe _{0.5} PO ₃
MgP ₂ O ₆	$Mg_{0.5}PO_3$	Fe ₃ P ₂ O ₈	Fe _{1.5} PO ₄

 P_2O_5 -SiO₂-Al₂O₃-Na₂O

Conclusions & outlook

- The model performance for FeO_x-containing systems has been improved
- A new mechanism is proposed to describe the local viscosity maximum around the fayalite compound in the binary system SiO₂–FeO_x
- The presence of the local viscosity maximum is dependent on temperature and oxygen partial pressure
- The model has been further developed for P₂O₅containing systems in conjunction with the structural dependence of viscosity
- More experimental data are needed for the further assessment of model parameters of P₂O₅-containing systems

Mitglied der Helmholtz-Gemeinschaft

Thank you very much for your attention!