

Selective Oxidation of Mn alloyed Steels during annealing prior to galvanizing Factsage user meeting

18-7-2017

W. Mao and W.G. Sloof

Delft University of Technology

Department of Materials Science and Engineering

Surface and Interface Engineering

TATA STEEL

TUDelft Delft University of Technology

Challenge the future

Content

- Project background
- Prediction of oxide phases formed upon internal oxidation of Fe-Mn-Cr steel alloys
- Compositional depth profile of internal (Mn,Fe)O in oxidized Mn alloyed steel
- Outlook

1.

Background

materials innovation institute

Advanced high strength steel (AHSS) in automotive industry

Advantage

• Reduction in body weight, fuel consumption and CO₂ emission

Main drawback

Low corrosion resistance

Solution

Hop-dip galvanizing

TATA STEEL

Industry annealing line before galvanizing

Oxidation environment in Direct Fired Furnace

Reduction atmosphere in Radiant Tube Furnace

Formation of oxides of alloying elements is thermodynamically favourable during annealing process

Problem of galvanizing quality

Major alloying element in AHSS: Mn, Si, Al, Cr

Poor adhesion of Zn coating due to stable oxides formed at steel surface

Goal: prevent external oxides formation

Project aim and industrial relevance

Aim:

- Development of oxidation model
- Predicting type of oxides formed
- Internal/external oxidation kinetics
- Final distribution of alloying elements

Relevance:

- Product development
 - (e.g. alloying composition design)
- Process optimisation
 - (e.g. annealing temperature, atmosphere)

TATA STEEL

7

2.

Prediction of oxide phases formed upon internal oxidation of Fe-Mn-Cr steels

Sample compositions

Steel composition in mole percent (weight percent in brackets)

Sample	С	Mn	Cr	Si	AI
Fe-1.7Mn	0.48 (0.10)	1.72 (1.70)	-	0.10 (0.05)	0.004 (0.002)
Fe-1.8Mn-0.5Cr	-	1.75 (1.72)	0.53 (0.49)	-	-
Fe-1.7Mn-1.5Cr	-	1.70 (1.67)	1.49 (1.39)	-	-
Fe-1.8Mn-0.6Cr-0.5Si	0.46 (0.10)	1.82 (1.80)	0.57 (0.53)	0.49 (0.25)	0.006 (0.003)
Fe-1.8Mn-1.1Cr-0.5Si	0.47 (0.10)	1.82 (1.80)	1.09 (1.02)	0.51 (0.26)	0.039 (0.019)
Fe-1.9Mn-1.0Cr-0.1Si	0.46 (0.10)	1.90 (1.88)	0.97 (0.91)	0.12 (0.06)	0.053 (0.026)
Fe-1.9Mn-1.6Cr-0.1Si	0.46 (0.10)	1.85 (1.83)	1.63 (1.53)	0.10 (0.05)	0.049 (0.024)
Fe-2.8Mn-0.6Cr-0.5Si	0.47 (0.10)	2.83 (2.80)	0.59 (0.55)	0.49 (0.25)	0.010 (0.005)

Effect of Cr and Si concentration can be studied

Annealing parameters

• Temperature: 950 ℃

Measured by thermocouple inside the quartz tube

- Gas atmosphere: Ar/N₂ + 5 vol.% H₂
 5N quality of gas supply, subsequently, oxygen, moisture and hydrocarbon filtered (Messer Griesheim)
- Dew point (DP): -45, -37, -30, -10, and +10 ℃
 De-aerated water supply with dissolved O₂ less than 100 ppb
 Dew point measured by calibrated easidew and optidew (Michell Instruments)
- Annealing time: 1 hour

$$H_2O=H_2 + 1/2O_2 \qquad \frac{1}{2}\log pO_2 = 3 - \frac{13088}{T} + \log(\frac{pH_2O}{pH_2})$$
Delft

Identification of oxide phases

X-ray diffraction (XRD) with grazing incidence geometry

Bruker D8 PSI

Grazing incidence detector scan Co Kα radiation Incident beam angle: 3° 2θ range: 20-60° Analysis depth: 1.3 μm (70%) Step size: 0.03° 2θ Counting time per step: 10 seconds

SEM observation of oxidized samples

Thermodynamics of oxide formation Comparison of oxide phases with phase diagram

Fe-Mn binary alloys in oxidation environment at 950 $^{\circ}\mathrm{C}$ computed with Factsage

Thermodynamics of oxide formation Effect of Cr on oxide formation in Fe-Mn steels

Fe – Cr -1.8 at.% Mn ternary alloys in oxidation environment at 950 $^{\circ}$ C

Adding Cr forms (Mn,Cr,Fe)₃O₄ spinel

Above 0.2 at.% Cr, dissociation pO_2 of (Mn,Fe)O is higher than $(Mn,Cr,Fe)_{3}O_{4}$

Dissociation pO_2 of (Mn,Fe)O increases with Cr concentration

Sample	DP-45	DP-37
Fe-1.8Mn-0.5Cr	(Mn,Cr,Fe) ₃ O ₄ (Mn,Fe)O	-
Fe-1.7Mn-1.5Cr	(Mn,Cr,Fe) ₃ O ₄	(Mn,Cr,Fe) ₃ O ₄ (Mn,Fe)O
Fe-1.9Mn-1.0Cr- 0.1Si	(Mn,Cr,Fe) ₃ O ₄	(Mn,Cr,Fe) ₃ O ₄ (Mn,Fe)O
Fe-1.9Mn-1.6Cr- 0.1Si	(Mn,Cr,Fe) ₃ O ₄	(Mn,Cr,Fe) ₃ O ₄ (Mn,Fe)O

Observation in agreement with phase diagram

Thermodynamics of oxide formation

Effect of Si on oxide formation in Fe-Mn-Cr steels

Fe – Cr - 0.5 at.% Si - 1.8 or 2.8 at.% Mn quarternary alloys in oxidation environment at 950 $^\circ$ C

Thermodynamics of oxide formation

Effect of temperature and crystal lattice of alloy matrix

Fe - Cr - 0.5 at.% Si - 1.8 at.% Mn quarternary alloys in oxidation environment

Dissociation pO_2 of (Mn,Cr,Fe)₃O₄ and (Mn,Fe)O decreases with temperature

Dissociation pO_2 of (Mn,Cr,Fe)₃O₄ and (Mn,Fe)O in austenite is slightly higher than in ferrite

3.

Compositional depth profile of internal (Mn,Fe)O in oxidized Mn alloyed steel

W. Mao & W.G. Sloof, Scripta Materialia, 2017, vol. 135, pp 29-32.

Phase diagrams of Fe-1.7Mn alloy in oxidizing environment

Fe concentration in (Mn,Fe)O increases with oxygen partial pressure

TUDelft

TATA STEEL

18

Predicted depth profile of internal oxidation zone

Annealing condition in N_2 with 5 vol.% H_2

Temperature

950

Dew point (°C)

+10

Sample composition (at.%):

ິ ແລ	<i>p</i> O ₂	С	Mn	Si	AI
	2.3 × 10 ⁻¹⁷	0.48	1.72	0.097	0.004
	$(-2)^{1/2}$				

 $N_{\underline{\mathbf{O}}} = K_{S} (p\mathbf{O}_{2})^{1/2}$

 $K_{s}(950C) = 740$

Predicted depth profile of internal oxidation zone

Annealing condition in N_2 with 5 vol.% H_2

Sample composition (at.%):

Dew point (°C)	Temperature (°C)	<i>p</i> O ₂	С	Mn	Si	AI
+10	950	2.3 × 10 ⁻¹⁷	0.48	1.72	0.097	0.004

Computed compositional depth profile of internal (Mn,Fe)O in Mn steels annealed for 1 hour

Sample preparation

- Removal of surface layer by mechanical polishing
- Measured weight loss to determine thickness of removed surface layer

SEM surface observation and XPS spectrum after removing 1.4 μ m of surface layer

Mn 2p binding energy shifted indicating formation of intennal MnO

Measurement of (Mn,Fe)O composition

XRD patterns of (Mn,Fe)O formed in Fe – 7 wt.% Mn steel annealed at 950 °C from DP -45 to 10 °C

TATA STEEL

Diffraction peaks of (Mn,Fe)O shifted with increasing Fe concentration

22

Fe concentration in (Mn,Fe)O can be determined using Vagard's law

Depth profile of internal oxidation zone

Annealing condition in N_2 with 5 vol.% H_2

Dew point (°C)	Temperature (°C)	<i>p</i> O ₂	С
+10	950	2.3×10 ⁻¹⁷	0.4

Sample composition (at.%):

С	Mn	Si	ΑΙ
0.48	1.72	0.097	0.004

Fe concentration in (Mn,Fe)O precipitates decreases with depth

Measured compositional depth profile of internal (Mn,Fe)O in agreement with prediction

At each depth oxide precipitate is in thermodynamic equilibrium with dissolved oxygen

Summary

- Type of oxide phases formed during annealing of Mn, Cr and Si alloyed steels (AHSS) can be well predicted with thermodynamic tool Factsage
- Composition of oxide solution (e.g. (Mn,Fe)O) as a function of pO₂ can be well predicted with Factsage
- Thermodynamic data of Fe alloys in Fstel database and oxides in Ftoxid database are reliable, and can be applied for numerical simulation of internal oxidation behaviour of AHSS

Outlook

- Thermodynamic data of Fe-O-X ternary system in solid solution
- Coupling Factsage with other program (e.g. Matlab)

