# Addition of TiO<sub>2</sub> to the HotVeGas Oxide database

**GTT-Technologies**, Herzogenrath

GTT Users Meeting, 28.06-30.06.2017 Herzogenrath

Tatjana Jantzen, Klaus Hack



# **Contents of presentation**

- Introduction
- Binary systems
- Solid solution phases in ternary systems
  - Cubic Spinel
  - Titania Spinel
  - Pseudobrookite
  - Corundum
- Conclusions



# Addition of TiO<sub>2</sub> to GTOX database

#### GTT-Technologies

•

- Binary systems
  - *AI-O*
  - *Ti-O*
  - *AI-Ti*
  - Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>
  - Al<sub>2</sub>O<sub>3</sub>-Ti<sub>2</sub>O<sub>3</sub>-O<sub>2</sub>
  - *MgO-TiO*<sub>2</sub>
- Ternary systems
  - AI-O-Ti
  - *Al*<sub>2</sub>*O*<sub>3</sub>-*MgO*-*TiO*<sub>2</sub>
  - MnO-Mn<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>
  - $FeO-Fe_2O_3$ -TiO\_2
  - SiO<sub>2</sub>-TiO<sub>2</sub>-Ti<sub>2</sub>O<sub>3</sub>

- **CaO-TiO**<sub>2</sub>
- FeO-TiO<sub>2</sub>-Fe
- Fe<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>-O<sub>2</sub>
- MnO-TiO<sub>2</sub>-Fe
- *Mn*<sub>2</sub>O<sub>3</sub>-*TiO*<sub>2</sub>-O<sub>2</sub>
- SiO<sub>2</sub>-TiO<sub>2</sub>

- *Al*<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-TiO<sub>2</sub>
- Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>-Ti<sub>2</sub>O<sub>3</sub>
- *MnO-Ti*<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>
- *MgO-SiO*<sub>2</sub>-*TiO*<sub>2</sub>
- *MgO-TiO*<sub>2</sub>-*Ti*<sub>2</sub>*O*<sub>3</sub>



# Introduction

#### **GTT-Technologies**

The associate species were added in order to describe the liquid phase in TiO<sub>x</sub>containing systems. The composition of the liquid oxide species are as introduced by Spear taking two moles of cations per associate. Species for similar systems are modelled in the same way, i.e. using the same stoichiometry.

| System                                           | Associate species                                                                                                                     | Used data for Gibbs energy |  |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
| Ti-O                                             | Ti (SGPS), Ti <sub>2</sub> O <sub>2</sub> <sup>*</sup> , Ti <sub>2</sub> O <sub>3</sub> <sup>*</sup> , Ti <sub>2</sub> O <sub>4</sub> | SGPS database, [99Waldner] |  |
| Me <sub>2</sub> O <sub>3</sub> -TiO <sub>2</sub> | Al <sub>2</sub> TiO <sub>5</sub>                                                                                                      | This work                  |  |
|                                                  | Fe <sub>2</sub> TiO <sub>5</sub>                                                                                                      | This work                  |  |
| MeO-TiO <sub>2</sub>                             | CaTiO <sub>3</sub>                                                                                                                    | This work                  |  |
|                                                  | FeTiO <sub>3</sub>                                                                                                                    | SGPS                       |  |
|                                                  | MgTiO <sub>3</sub> <sup>*</sup> , Mg <sub>2</sub> TiO <sub>4</sub> <sup>*</sup>                                                       | SGPS                       |  |
|                                                  | MnTiO <sub>3</sub> , Mn <sub>2</sub> TiO <sub>4</sub>                                                                                 | This work                  |  |
| MeO-Ti <sub>2</sub> O <sub>3</sub>               | MgTi <sub>2</sub> O <sub>4</sub> , MnTi <sub>2</sub> O <sub>4</sub>                                                                   | This work                  |  |

\* *H<sub>f</sub>* changed in this work.



# **Modelling of ternary systems**

| GII-lechnologies                                                   |                |                                                                                                                                                                                                            |           |  |
|--------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| System                                                             | Phase          | Description                                                                                                                                                                                                | Used data |  |
| Al <sub>2</sub> O <sub>3</sub> -MgO-TiO <sub>2</sub>               | Spinel         | (Al <sup>+3</sup> ,Mg <sup>+2</sup> ,Ti <sup>+4</sup> ) <sub>1</sub> (Al <sup>+3</sup> ,Mg <sup>+2</sup> ,Va) <sub>2</sub><br>(Mg <sup>+2</sup> , <u>Va</u> ) <sub>2</sub> (O <sup>-2</sup> ) <sub>4</sub> | This work |  |
|                                                                    | Pseudobrookite | (AI, Mg,Ti) <sub>1</sub> (AI, Ti) <sub>1</sub> (Ti) <sub>1</sub> (O) <sub>5</sub>                                                                                                                          | This work |  |
| Al <sub>2</sub> O <sub>3</sub> -SiO <sub>2</sub> -TiO <sub>2</sub> | Pseudobrookite | (AI, Ti) <sub>1</sub> (AI, Ti) <sub>1</sub> (Ti) <sub>1</sub> (O <u>)</u> <sub>5</sub>                                                                                                                     | This work |  |
| FeO-Fe <sub>2</sub> O <sub>3</sub> -TiO <sub>2</sub>               | Spinel         | $(Fe^{+2},Fe^{+3},Ti^{+4})_1(Fe^{+3},Va)_2$<br>$(Fe^{+2},Va)_2(O^{-2})_4$                                                                                                                                  | This work |  |
|                                                                    | Pseudobrookite | (Fe, Ti) <sub>1</sub> (Ti, Fe) <sub>1</sub> (Ti) <sub>1</sub> (O) <sub>5</sub>                                                                                                                             | This work |  |
|                                                                    | Corundum       | (Fe <sup>+3</sup> , Ti <sup>+3</sup> , Fe <sub>0.5</sub> Ti <sub>0.5</sub> <sup>+3</sup> ) <sub>2</sub> (Va) <sub>1</sub> (O <sup>-2</sup> ) <sub>3</sub>                                                  | This work |  |
| MgO-TiO <sub>2</sub> -Ti <sub>2</sub> O <sub>3</sub>               | Titania-Spinel | (Mg <sup>+2</sup> ,Ti <sup>+4</sup> ) <sub>1</sub> (Ti <sup>+3</sup> ,Mg <sup>+2</sup> ,Va) <sub>2</sub> (O <sup>-2</sup> ) <sub>4</sub>                                                                   | This work |  |
|                                                                    | Pseudobrookite | (Mg, Ti) <sub>1</sub> (Ti) <sub>1</sub> (Ti) <sub>1</sub> (O) <sub>5</sub>                                                                                                                                 | This work |  |
|                                                                    | Corundum       | ( <i>Ti</i> <sup>+3</sup> ,Mg <sub>0.5</sub> Ti <sub>0.5</sub> <sup>+3</sup> ) <sub>2</sub> (Va) <sub>1</sub> (O <sup>-2</sup> ) <sub>3</sub>                                                              | This work |  |
| MnO-Mn <sub>2</sub> O <sub>3</sub> -TiO <sub>2</sub> -             | Spinel         | (Mn <sup>+2</sup> ,Ti <sup>+4</sup> ) <sub>1</sub> (Mn <sup>+2</sup> , Mn <sup>+3</sup> ,Mn <sup>+4</sup> ,Va) <sub>2</sub>                                                                                | This work |  |
| Ti <sub>2</sub> O <sub>3</sub>                                     |                | (Va) <sub>2</sub> (O <sup>-2</sup> ) <sub>4</sub>                                                                                                                                                          |           |  |
|                                                                    | Titania-Spinel | (Mn <sup>+2</sup> ,Ti <sup>+4</sup> )(Mn <sup>+2</sup> , Mn <sup>+3</sup> , Ti <sup>+3</sup> ,Va) <sub>2</sub> (O <sup>-2</sup> ) <sub>4</sub>                                                             | This work |  |
|                                                                    | Pseudobrookite | $(Mn, Ti)_1(Ti)_1(Ti)_1(O)_5$                                                                                                                                                                              | This work |  |
|                                                                    | Corundum       | (Mn <sup>+3</sup> , Ti <sup>+3</sup> ,Mn <sub>0.5</sub> Ti <sub>0.5</sub> <sup>+3</sup> ) <sub>2</sub> (Va) <sub>1</sub> (O <sup>-2</sup> ) <sub>3</sub>                                                   | This work |  |



## **Modelling of Ti-containing phases**

| Phase                                     | Description                                                                                                                                                                                                                                                                 |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fcc-A1                                    | (Al, Ca, Fe, Cr, P, Mg, Mn, S, Si, Zn, <mark>Ti</mark> , O) (Va)                                                                                                                                                                                                            |
| bcc-A2                                    | (Al, Ca, Fe, Cr, P, Mn, S, Zn, <mark>Ti</mark> , O, <mark>TiO<sub>3</sub></mark> ) (Va) <sub>3</sub>                                                                                                                                                                        |
| hcp-A3                                    | (AI, <u>Ti</u> ) <sub>2</sub> (O, Va)                                                                                                                                                                                                                                       |
| Cubic Spinel                              | (Al <sup>+3</sup> ,Cr <sup>+2</sup> ,Cr <sup>+3</sup> ,Fe <sup>+2</sup> ,Fe <sup>+3</sup> ,Mg <sup>+2</sup> ,Mn <sup>+2</sup> ,Zn <sup>+2</sup> ,Ti <sup>+4</sup> )(Al <sup>+3</sup> ,Ca <sup>+2</sup> ,Cr <sup>+3</sup> ,Fe <sup>+2</sup> ,                                |
|                                           | Fe <sup>+3</sup> ,Mg <sup>+2</sup> ,Mn <sup>+2</sup> ,Mn <sup>+3</sup> ,Mn <sup>+4</sup> ,Va) <sub>2</sub> (Cr <sup>+2</sup> , Fe <sup>+2</sup> , Mg <sup>+2</sup> ,Va) <sub>2</sub> (O <sup>-2</sup> ) <sub>4</sub>                                                        |
| Titania Spinel                            | (Fe <sup>+2</sup> ,Fe <sup>+3</sup> ,Mg <sup>+2</sup> ,Mn <sup>+2</sup> ,Ti <sup>+4</sup> )(Al <sup>+3</sup> ,Fe <sup>+2</sup> ,Fe <sup>+3</sup> ,Mg <sup>+2</sup> ,Mn <sup>+2</sup> ,Mn <sup>+3</sup> ,Va, Ti <sup>+3</sup> ) <sub>2</sub> (O <sup>-2</sup> ) <sub>4</sub> |
| PSbrookite-Ti <sub>3</sub> O <sub>5</sub> | (AI, Mg, Fe, Mn, Ti) <sub>1</sub> (AI, Ti, Fe) <sub>1</sub> (Ti) <sub>1</sub> (O) <sub>5</sub>                                                                                                                                                                              |
| ΤΙΟΧ                                      | ( <i>Ti</i> + <sup>3</sup> , <u>Ti+</u> <sup>2</sup> , Va) <sub>1</sub> ( <i>Ti</i> , <u>Va</u> ) <sub>1</sub> (O <sup>-2</sup> ) <sub>1</sub>                                                                                                                              |
| Rutile                                    | ( <i>Ti</i> + <sup>3</sup> , <i>Ti</i> + <sup>2</sup> , Va) <sub>1</sub> ( <u>Ti</u> , Va) <sub>1</sub> (O <sup>-2</sup> ) <sub>1</sub>                                                                                                                                     |
| AI3M_D022                                 | ( <u>AI</u> , <mark>Ti</mark> ) <sub>3</sub> ( <b>Ti</b> )                                                                                                                                                                                                                  |
| TI3AL                                     | (AI, <u>Ti</u> ) <sub>3</sub> ( <u>AI</u> , <u>Ti</u> )(O, <u>Va</u> ) <sub>2</sub>                                                                                                                                                                                         |
| TIAL                                      | (AI, <u>Ti</u> )( <u>AI</u> , <u>Ti</u> )(O, <u>Va</u> ) <sub>2</sub>                                                                                                                                                                                                       |
| Corundum                                  | ( <u>Al+3</u> ,Cr+2, <u>Cr+3</u> , <u>Fe+3</u> , <u>Mn+3</u> , <u>Ti+3</u> , <u>Fe<sub>0.5</sub>Ti<sub>0.5</sub>+3</u> , <u>Mg<sub>0.5</sub>Ti<sub>0.5</sub>+3</u> , <u>Mn<sub>0.5</sub>Ti<sub>0.5</sub>+3</u> ) <sub>2</sub>                                               |
|                                           | $(Cr^{+3}, Va)_1(O^{-2})_3$                                                                                                                                                                                                                                                 |
| SiO <sub>2</sub> -HT                      | ( <u>Si+4</u> , Ti+4)( <u>Si+4</u> , Ti+4) (O-2) <sub>4</sub>                                                                                                                                                                                                               |
| MeO                                       | (Al <sup>+3</sup> ,Ca <sup>+2</sup> ,Cr <sup>+3</sup> ,Fe <sup>+2</sup> ,Fe <sup>+3</sup> ,Mg <sup>+2</sup> ,Mn <sup>+2</sup> ,Mn <sup>+3</sup> ,Ti <sup>+4</sup> ,Ti <sup>+3</sup> ,Zn <sup>+2</sup> )(O <sup>-2</sup> )                                                   |



### **Ti-O phase diagram**







T.B. Massalski (ed), Binary Alloy Phase Diagrams, Second Edition, ASM International, Metals Park, OH 1990.

| Phase                                                                                                                                                                                                                                         | Description                                                                                                            | Used data      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------|
| Slag                                                                                                                                                                                                                                          | (Ti, Ti <sub>2</sub> O <sub>2</sub> , Ti <sub>2</sub> O <sub>3</sub> , Ti <sub>2</sub> O <sub>4</sub> )                | This work      |
| bcc-A2                                                                                                                                                                                                                                        | $(\underline{Ti}, O, \overline{TiO}_3)$ $(Va)_3$                                                                       | This work      |
| hep-A3                                                                                                                                                                                                                                        | ( <u>Ti)</u> 2(O, Va)                                                                                                  | [07Cancarevic] |
| ΤΙΟΧ                                                                                                                                                                                                                                          | (Ti <sup>+3</sup> , Ti <sup>+2</sup> , Va) <sub>1</sub> ( <u>Ti</u> , Va) <sub>1</sub> (O <sup>-2</sup> ) <sub>1</sub> | [07Cancarevic] |
| Rutile                                                                                                                                                                                                                                        | (Ti) <sub>1</sub> (O, Va) <sub>2</sub>                                                                                 | [99Waldner]    |
| Ti <sub>3</sub> O <sub>2</sub> , TiO, Ti <sub>2</sub> O <sub>3</sub> , Ti <sub>3</sub> O <sub>5</sub> , Ti <sub>4</sub> O <sub>7</sub> , Ti <sub>5</sub> O <sub>9</sub> , Ti <sub>6</sub> O <sub>11</sub> , Ti <sub>7</sub> O <sub>13</sub> , | stoichiometric                                                                                                         | [99Waldner]    |
| Ti <sub>8</sub> O <sub>15</sub> , Ti <sub>9</sub> O <sub>17</sub> , Ti <sub>10</sub> O <sub>19</sub> , Ti <sub>20</sub> O <sub>39</sub>                                                                                                       | stoichiometric                                                                                                         | [99Waldner]    |



### Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> phase diagram

#### **GTT-Technologies**



A.M. Lejus, D. Goldberg, A. Revcolevschi, C.R. Seances Acad. Sci., Ser. C, 263 [20], (1966), pp.1223-1226.

### Calculated Al<sub>2</sub>O<sub>3</sub>-Ti<sub>2</sub>O<sub>3</sub> phase diagram





### **CaO-TiO<sub>2</sub> phase diagram**





H.E. Tulgar, Istanbul Tek. Univ. Bul., 29 [1], (1976), pp. 111-129.





### Fe<sub>3</sub>O<sub>4</sub>-TiO<sub>2</sub> phase diagram in air





### MgO-TiO<sub>2</sub> phase diagram

#### **GTT-Technologies**



J. Shindo, J. Chryst. Growth, 50 [4], (1980), pp.839-851.

![](_page_11_Picture_4.jpeg)

### **MnO-TiO<sub>2</sub> phase diagram**

![](_page_12_Figure_3.jpeg)

![](_page_12_Picture_4.jpeg)

### SiO<sub>2</sub>-TiO<sub>2</sub> phase diagram

![](_page_13_Figure_2.jpeg)

R. Roy, R.C. DeVries, D.E. Rase, M.W. Shafer, E.F. Osborn, 1952.

![](_page_13_Picture_4.jpeg)

### **Description of the phase Spinel**

#### **GTT-Technologies**

Spinel (Al<sup>+3</sup>, Cr<sup>+2</sup>, Cr<sup>+3</sup>, Fe<sup>+2</sup>, Fe<sup>+3</sup>, Mg<sup>+2</sup>, Mn<sup>+2</sup>, Zn<sup>+2</sup>, Ti<sup>+4</sup>) (Al<sup>+3</sup>, Ca<sup>+2</sup>, Cr<sup>+3</sup>, Fe<sup>+2</sup>, Fe<sup>+3</sup>, Mg<sup>+2</sup>, Mn<sup>+2</sup>, Mn<sup>+3</sup>, Mn<sup>+4</sup>, Va)<sub>2</sub> (Cr<sup>+2</sup>, Fe<sup>+2</sup>, Mg<sup>+2</sup>, Va)<sub>2</sub>(O<sup>-2</sup>)<sub>4</sub>

Gibbs energies of real Spinels are taken from SGPS database and G of fictive compounds are estimated using reciprocal equations.

![](_page_14_Figure_4.jpeg)

### Spinel in Al<sub>2</sub>O<sub>3</sub>-MgO-TiO<sub>2</sub>

![](_page_15_Figure_1.jpeg)

P. Boden, F.P. Glasser, Trans. J. Br. Ceram. Soc., 72[5], (1973), pp. 215-220.

Spinel – solid solution phase with end-members  $AI_2MgO_4$  and  $Mg_2TiO_4$  $(AI^{+3},Mg^{+2},Ti^{+4})_1(AI^{+3},Mg^{+2},Va)_2(Mg^{+2},\underline{Va})_2(O^{-2})_4$ 

![](_page_15_Figure_4.jpeg)

## Spinel in Al<sub>2</sub>O<sub>3</sub>-MgO-TiO<sub>2</sub>

![](_page_16_Figure_1.jpeg)

![](_page_16_Picture_2.jpeg)

### Isothermal section at 1300°C in FeO-Fe<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>

![](_page_17_Figure_2.jpeg)

![](_page_17_Picture_3.jpeg)

### Liquidus surface in MgO-SiO<sub>2</sub>-TiO<sub>2</sub>

![](_page_18_Figure_2.jpeg)

![](_page_18_Picture_3.jpeg)

### **Modelling of Titania Spinel**

**GTT-Technologies** 

Titania Spinel
Ti+3

(Fe+2, Fe+3, Mg+2, Mn+2, Ti+4)
Image: Constraint of the second second

 $Mg_2TiO_4$ ,  $MgTi_2O_4$ ,  $Mn_2TiO_4$ ,  $MnTi_2O_4$ ,  $Fe_2TiO_4$ 

![](_page_19_Figure_4.jpeg)

J.-B. Kang, H.-B. Lee, ISIJ Intern., 45 (2005), pp. 1543-1551.

A.D. Pelton, G. Eriksson, D. Krajewski, M.Göbbels, E. Woermann, Z. Phys. Chem., 207 (1998), pp. 163-180. B. Leusmann, N. Jb. Miner. Mh., 12 (1979), pp. 556-559.

![](_page_19_Picture_8.jpeg)

### Isothermal section at 1400°C in MnO-TiO<sub>2</sub>-Ti<sub>2</sub>O<sub>3</sub>

![](_page_20_Figure_2.jpeg)

![](_page_20_Picture_3.jpeg)

### Isothermal section at 1500°C in MgO-TiO<sub>2</sub>-Ti<sub>2</sub>O<sub>3</sub>

![](_page_21_Figure_2.jpeg)

![](_page_21_Picture_3.jpeg)

### Isothermal section at 1200°C in MnO-TiO<sub>2</sub>-Ti<sub>2</sub>O<sub>3</sub>

![](_page_22_Figure_2.jpeg)

![](_page_22_Picture_3.jpeg)

### Pseudobrookite in Al<sub>2</sub>O<sub>3</sub>-MgO-TiO<sub>2</sub>

**GTT-Technologies** 

### **Pseudobrookite** – solid solution phase (AI,Mg,Mn,Fe,Ti)<sub>1</sub>(AI,Fe,Ti)<sub>1</sub>(Ti)<sub>1</sub>(O)<sub>5</sub> with end-members:

![](_page_23_Figure_3.jpeg)

![](_page_23_Picture_4.jpeg)

### Isopleth Al<sub>2</sub>TiO<sub>5</sub>-MgTi<sub>2</sub>O<sub>5</sub> in Al<sub>2</sub>O<sub>3</sub>-MgO-TiO<sub>2</sub>

![](_page_24_Figure_2.jpeg)

![](_page_24_Picture_3.jpeg)

### Isothermal section at 1200°C in MnO-Ti<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>

**GTT-Technologies** 

TiO<sub>2</sub> - TiO<sub>1.6</sub> - Mn<sub>0.33</sub>Ti<sub>0.67</sub>O<sub>1.6</sub> 1200°C, 1 atm GactSage" TiO, Ruti PSBROOKITE-TJ3O5 + MnTiO3(s) PSBROOKITE-TI3O5 + Ti2O3(s2) Titania-SPINEL + PSBROOKITE-TI305 Mn<sub>0.33</sub>Ti<sub>0.67</sub>O<sup>\*</sup><sub>1.6</sub> **TiO**<sub>1.6</sub> 03 0.2 0.1 mole fraction

![](_page_25_Figure_3.jpeg)

*I.E. Grey, C. Li, A.F. Reid, J. Solid State Chem.,* 17 [4], (1976), pp. 343-352.

![](_page_25_Picture_5.jpeg)

### **Corundum in FeO-TiO<sub>2</sub>-Fe<sub>2</sub>O<sub>3</sub>**

**GTT-Technologies** 

Corundum  $(\underline{AI^{+3}}, Cr^{+2}, \underline{Cr^{+3}}, \underline{Fe^{+3}}, \underline{Mn^{+3}}, \underline{Ti^{+3}}, \underline{Fe_{0.5}Ti_{0.5}^{+3}}, \underline{Mg_{0.5}Ti_{0.5}^{+3}}, \underline{Mn_{0.5}Ti_{0.5}^{+3}})_2(Cr^{+3}, Va)_1(O^{-2})_3$ 

![](_page_26_Figure_3.jpeg)

![](_page_26_Figure_4.jpeg)

![](_page_26_Figure_5.jpeg)

![](_page_26_Picture_6.jpeg)

### Corundum in MgO-TiO<sub>2</sub>-Ti<sub>2</sub>O<sub>3</sub> and MnO-TiO<sub>2</sub>-Ti<sub>2</sub>O<sub>3</sub>

![](_page_27_Figure_2.jpeg)

![](_page_27_Picture_3.jpeg)

# Conclusions

- **GTT-Technologies** 
  - The liquid phase in all subsystems was evaluated using associate species model (two cations per species).
  - All systems were assessed using experimental phase diagram information.
  - 12 binaries and 10 ternary systems were described.
  - The 39 stoichiometric phases containing Ti were incorporated.
  - The solubility ranges of 14 solid solution phases containing Titanium were described using available experimental data.

![](_page_28_Picture_7.jpeg)

# **Thanks for your attention**

![](_page_29_Picture_2.jpeg)

![](_page_29_Picture_3.jpeg)