Shortened online version – for further information contact sander.arnout@inspyro.be

Applications of thermodynamics in rare earth recycling research

Sander Arnout

INS

(c) InsPyro 2017

Introduction: InsPyro

B2B consultancy company KU Leuven spin-off (2009) Founded and run by PhD's

- Process development & improvement through:
 - Modelling and literature
 - Experiments
 - Characterization
 - Industrial experience
- Industries:
 - Recycling incl. batteries and residues
 - Non-ferrous metallurgy (lead-zinc)
 - Steel, cast iron and ferro-alloys
- www.inspyro.be

InsPyro

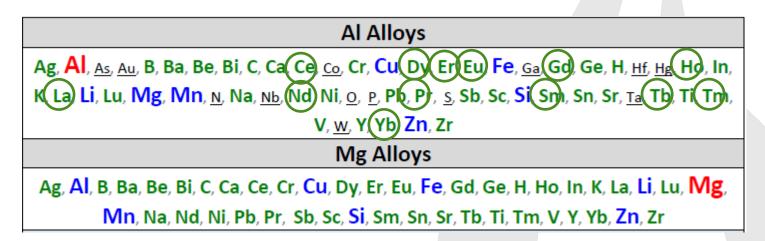
Rare earth recycling and thermodynamics

- Thermodynamic approach highly successful in understanding and predicting high temperature processes
- Several high temperature processes under investigation for rare earths
- Requirement: databases of relevant phases (Gibbs free energy of solids, solutions,...)

Example: EREAN project

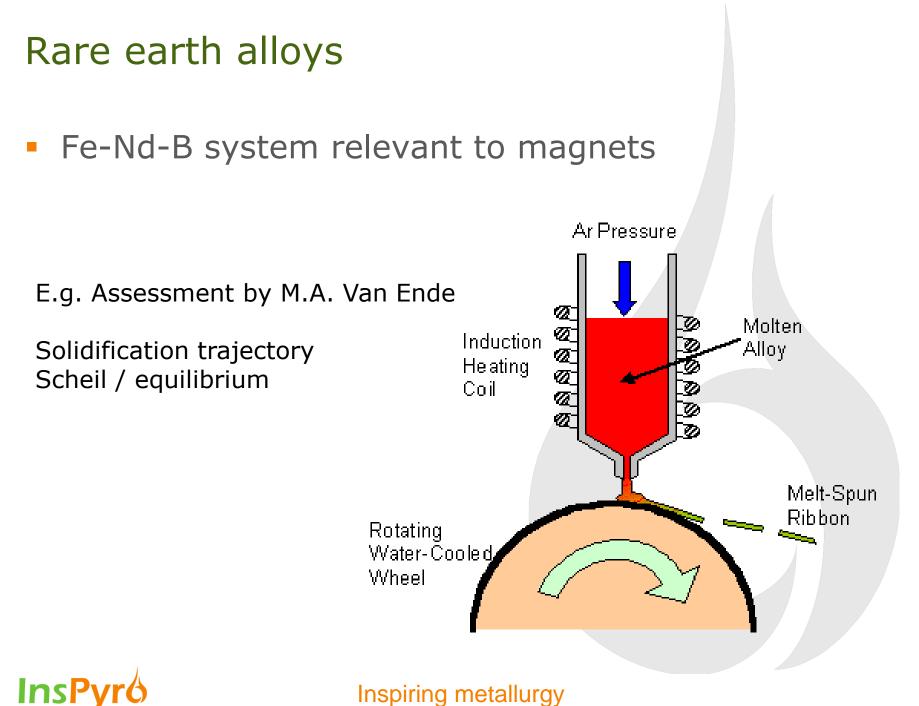
- Focus on magnets
 - Electric motors
 - Windmills
 - Cars
 - Hard disk drives
- Balance problem
 - Nd and Dy highly wanted

Inspiring metallur(Source: Öko-Institut


The balance problem

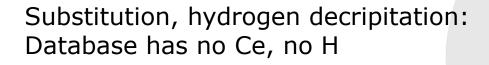
	REE	Bastnasite Mountain Pass, USA	Bastnasite Bayan Obo, China	Monazite Mt. Weld, Australia	Xenotime Lehat, Malaysia	High Y RE laterite Longnan, China	Low Y RE laterite Xunwu, China	Loparite Kola Peninsula Russia
Light REE	La Ce	33.8 49.6	23.0 50.0	25.5 46.7	1.2 3.1	1.8 0.4	43.4 2.4	25.0 50.5
	Pr	49.0	6.2	5.3	0.5	0.4	2.4 9.0	5.0
	Nd	11.2	18.5	18.5	1.6	3.0	31.7	15.0
Lig	Sm	0.9	0.8	2.3	1.1	2.8	3.9	0.7
HeavyREE	Eu	0.1	0.2	0.4	Trace	0.1	0.5	0.1
	Gd	0.2	0.7	<0.1	3.5	6.9	3.0	0.6
	Tb	0.01	0.1	<0.1	0.9	1.3	Trace	Trace
	Dy	0.03	0.1	0.1	8.3	6.7	Trace	0.6
	Но	0.01	Trace	Trace	2.0	1.6	Trace	0.7
	Er	0.01	Trace	Trace	6.4	4.9	Trace	0.8
	Tm	0.01	Trace		1.1	0.7	Trace	0.1
	Yb	0.01	Trace		6.8	2.5	0.3	0.2
	Lu	Trace	Trace		1.0	0.4	0.1	0.2
	Y	0.1	Trace	<0.1	61.0	65.0	8.0	1.3

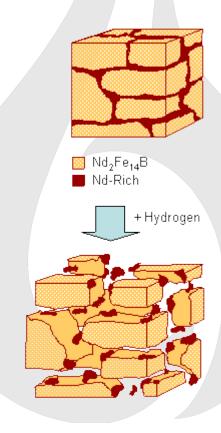
InsPyro


Rare earth alloys

- Application of rare earths in alloys
 - Database for aluminium alloys containing rare earths
 - Database for magnesium alloys containing rare earths

- Limited interactions in iron and zinc based systems
 - E.g. Fe-Dy-Tb
 - E.g. Fe-Nd-B

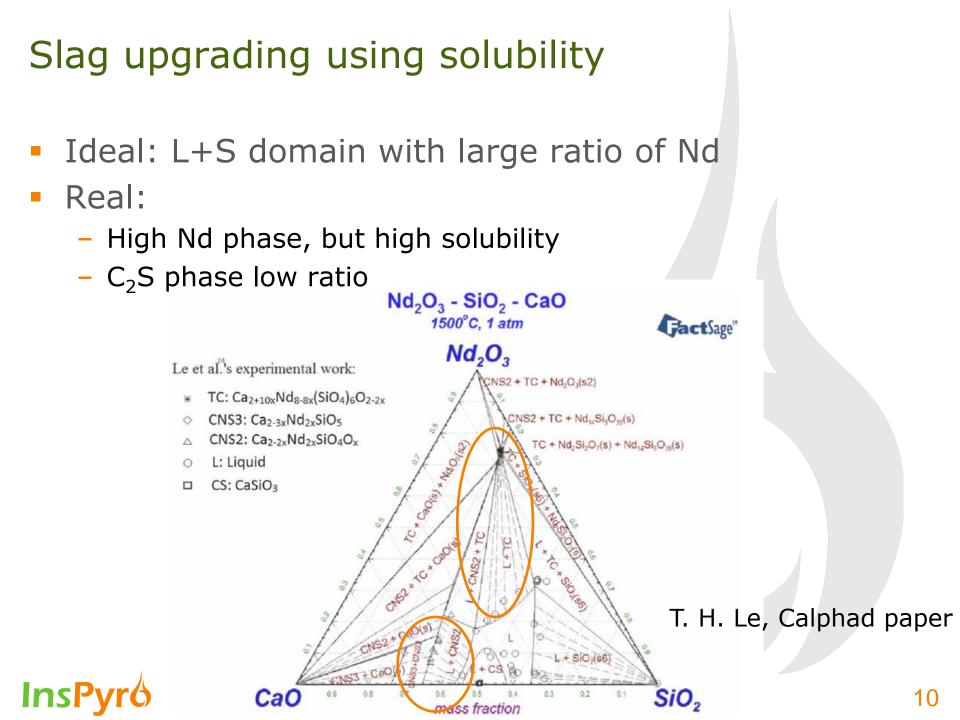

Ins



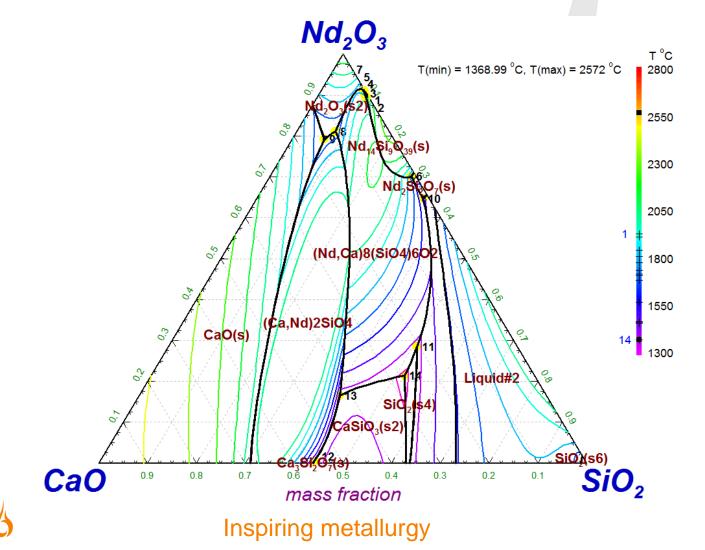
Solidification of Fe-Nd-B alloy

Equilibrium cooling

Scheil cooling



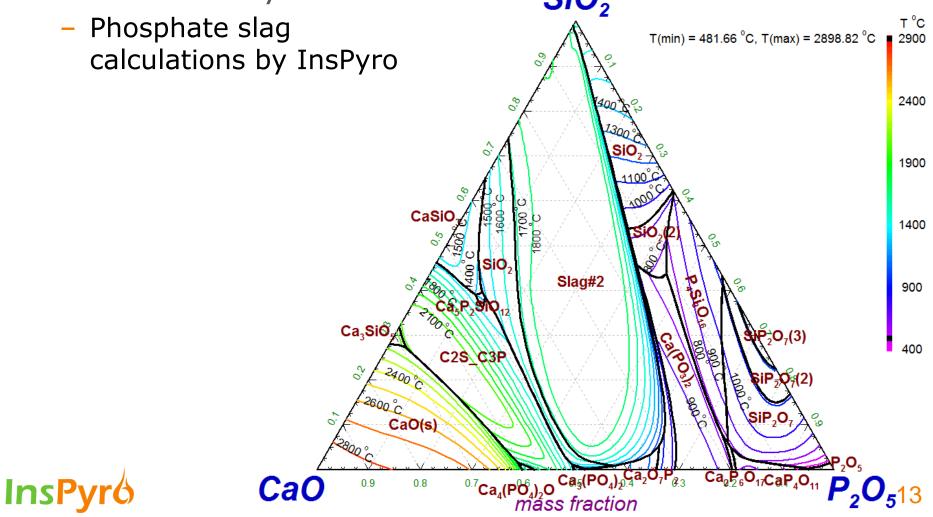
Rare earths in slag


- Limited databases available
 - Al_2O_3 -REO
- Behaviour in silicate slags: focus on Nd
 - T.H. Le:
 - Phase Relations of the CaO-SiO2-Nd2O3 System and the Implication for Rare Earths Recycling, Met Trans B
 - Thermodynamic assessment of the Nd2O3-CaO-SiO2 ternary system, Calphad

Rare earths in slag

InsP

Behaviour in silicate slags: focus on Nd (T.H. Le)


NTNU work on apatite concentrate

- Apatite concentrate
- REE content not so large, but left in slag after removal of P, and possibly CaC₂
- Thermodynamic estimation of process
- M.W. Kennedy et al. Pyrometallurgical Treatment of Apatite Concentrate with the Objective of Rare Earth Element Recover, J. Sustainable Metallurgy

Rare earth concentration in slags

 Apatite smelting process proposed by T. Sun and M.W. Kennedy
SiO₂

Other processes

- Roasting + leaching processes (e.g. M.R. Onal):
 - Sulphates: some solids are available
 - Chlorides: some solids are available
 - Nitrates: ?
 - To be checked whether all is consistent
 - Aqueous database (Thereda) focus on actinides (heavy REE)
- High-temperature electrolysis
 - RE oxides and salts in liquid salt systems
 - System Li,Mg,Ca,La,Ce,Nd//F: mainly binary systems
 - System Li,Mg,Ca,La,Ce,Nd//Cl: mainly binary systems
 - ReCl3-ReF3 (Re = La,Ce,Nd): approximately optimized

InsPyro

InsPyro: contact

InsPyro NV Kapeldreef 60 3001 Leuven Belgium + 32 16 298 491 info@inspyro.be www.inspyro.be

InsPyro