



# **Calorimetry on pure substances and complex non-equilibrium Al-systems**

**Richard Kemsies**<sup>a</sup> Benjamin Milkereit<sup>a,b,c</sup>, Christoph Schick<sup>b,c</sup>, Olaf Kessler<sup>a,c</sup>

<sup>*a,b,c</sup>*University of Rostock, Germany <sup>*a*</sup>Chair of Materials Science, <sup>*b*</sup>Polymer Physics Group <sup>*c*</sup>CALOR Calorimetry and Thermal Analysis Laboratory Rostock</sup>

> GTT-Technologies' 18th Annual Users' Meeting Herzogenrath, Germany June 29 - July 1, 2016





## • Motivation

- <u>D</u>ifferential <u>S</u>canning <u>C</u>alorimetry on Aluminium alloys
- DSC Step Scan method for cp measurement





How slow to

 $\rightarrow$  full solution

dissolve everything?

### heat treatment of metallic materials

#### basic scheme applies for several materials

e. g. steels, Ni- & Co based superalloys, Al alloys, ...







### • Motivation

- <u>D</u>ifferential <u>S</u>canning <u>C</u>alorimetry on Aluminium alloys
- DSC Step Scan method for cp measurement





### Differential Scanning Calorimetry (DSC)

#### measurement of (tiny) heat

- 2 identical micro furnaces in symmetric system
- PC controlled temperature programs: heating/ cooling
- regulation: equal temperature
- difference in heating power or heat flow measured



S: sample furnace; R: reference furnace (equal S), 1heating wire, 2 Thermopile; measuring systems – separately – in ambience of const. temperature











### Preliminary tests Al alloys

#### How to measure precipitation heat – Cp or excess-Cp?







### Preliminary tests Al alloys

#### **Obligatory sample package!**

- important role of radiation losses → baseline stability
- samples change surface color:
  - ≠ bright → dark grey

radiation effect changing  $\rightarrow$  bending

• bending reduction  $\rightarrow$  sample package!







### DSC measures heat effects

#### sample compared with inert reference sample







### Challenge

#### Very large scale of technically & physically interesting heating & cooling rates!

e.g. one cooling method – different component dimensions



range depends on physical requirements alloy, heating/cooling procedure, dimensions





### How to cover all relevant rates?

#### Use different DSC types and methods

direct in-situ cooling experiments Milkereit et al., Thermochim. Acta 492 (2009) 73-78.



![](_page_11_Picture_0.jpeg)

![](_page_11_Picture_1.jpeg)

J. Osten et al.. Dissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates. Materials 2015, 8, 2830-2848. DOI: 10.3390/ma8052830

### Continuous heating DSC AA6005A to 580 °C

0.01 – 5 K/s

- suppression of reactions with increasing rate
- serious peak shift, e. g. peak b:
  - observed  $\Delta T$ : 160 K
  - thermal lag  $\approx 10$  K

![](_page_11_Figure_9.jpeg)

![](_page_11_Figure_10.jpeg)

![](_page_12_Picture_0.jpeg)

![](_page_12_Picture_1.jpeg)

![](_page_12_Figure_2.jpeg)

![](_page_13_Picture_0.jpeg)

![](_page_13_Picture_1.jpeg)

#### Continuous cooling precipitation diagrams EN AW-6005A solution annealing: 540 °C 20 min mass fraction Si Fe Cu Мn Mg Cr Zn Τï 0.68 0.20 0.01 0.11 0.57 0.040 0.01 0.018 in % <hardness 500 (HV1) temperature in °C after: N 400 25 °C 7 min + 180 °C 4 h 300 α uCCR: 200. HTR: 30 K/min NTR: 375 K/min 100 106 (106 0 10 100000 1000000 1001000 10000 time in s

![](_page_14_Picture_0.jpeg)

![](_page_14_Picture_1.jpeg)

### precipitation start temperature

![](_page_14_Figure_3.jpeg)

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_1.jpeg)

![](_page_15_Figure_2.jpeg)

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

### • Motivation

- <u>D</u>ifferential <u>S</u>canning
  <u>C</u>alorimetry on Aluminium alloys
- DSC Step Scan method for cp measurement

![](_page_17_Picture_0.jpeg)

![](_page_17_Picture_1.jpeg)

Al crucible

Referen

- Platinum Alloy -

PRT Senso

\_\_\_\_ Platinum \_\_\_\_ Resistance Heater

 $\int \dot{Q}_{sample} - \dot{Q}_{empty} dt$ 

### cp measurement with DSC

#### high accuracy through step scan method

C. Schick (2002): Temperature modulated differential scanning calorimetry (TMDSC)- basics and applications to polymers In: Handbook of Thermal Analysis and Calorimetry. Vol. 3: Applications to Polymers and Plastics S.Z.D. Cheng, editor, pp. 713-810.

![](_page_17_Figure_5.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_1.jpeg)

![](_page_18_Figure_2.jpeg)

© UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_1.jpeg)

### evaluating the data

#### comparison cp of pure AI with different literature sources

![](_page_19_Figure_4.jpeg)

08.07.2016 UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_1.jpeg)

### step scan application on intermetallic phases

#### why important?

 aluminium alloys for long-term stable electrical aluminium connections (ALLEE)
 → large collaborative project (GTT, Hydro Aluminium, TU Dresden, RWTH Aachen)

![](_page_20_Picture_5.jpeg)

long-term stable intermetallic phases (e.g. Al3Zr, Al3Ni) also at elevated temperatures (140 °C)

#### • challenge:

prediction (modelling) of precipitation and dissolution/growth investigation of AI alloy: sum cp of all phases ☺

#### solution: very difficult to produce! investigation of pure intermetallic phases (Uni Jena, Germany) <sup>(C)</sup>

![](_page_20_Picture_10.jpeg)

![](_page_20_Picture_11.jpeg)

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_1.jpeg)

### intermetallic phases

![](_page_21_Figure_3.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_1.jpeg)

### results

#### pure intermetallic phases Al3Zr, Al13Fe4, Al3Ni, Al10Fe3Ni

![](_page_22_Figure_4.jpeg)

08.07.2016 UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

cooling of EN AW-7150 after 480 °C 1 h

![](_page_23_Figure_3.jpeg)

© UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP