WnM-Projekt Werkstoffe nach Maß *Tailor-made materials*

> M. to Baben, K. Hack GTT-Technologies GTT User Meeting, 30.6.2016

Outline

- Contributing to WnM
- Using SpMCBN database
- Navigating 10-D chemical space
- Predicting phase formation

Contributing to WnM

Hard alloys based on Fe-Mn-Cr-Ti-V-Ni-Al-Si-C-B.

Identification of compositions for hard alloys containing:

10D

- martensite and ferrite
- austenite
- metastable austenite
- intermetallic phases stable over wide T-range

The SpMCBN database

- Spencer Group Non-Oxide Refractories Database
- B, C, N, Si
- Me = AI, Ca, Co, Cr, Fe, Hf, Mg, Mn, Mo, Nb, Ni, Re, Sc, Ta, Tc, Ti, V, W, Y, Zr
- Assesed ternary phase diagrams consisting of
 - Two Me combined with C, B, N or Si
 - Me combined with two of C, B, N, Si
- 186 binary and 203 ternary systems (154 newly assessed)

Outline

- Contributing to WnM
- Using SpMCBN database
- Navigating 10-D chemical space
- Predicting phase formation

Chemical Space – travelling by trial and error

Chemical Space – navigating by thermodynamics

Chemical Space – navigating by thermodynamics

Chemical Space

Good and bad anology:

Good: vast space

Bad: 3D vs 10D

Image from NASA (Hubble telescope)

Navigating 10-dimensional chemical space

- \rightarrow "Everything" is possible to form
- \rightarrow But: Nothing is possible to plot
- \rightarrow Navigation using macros

<u>Restriction</u>: number of solutions \leq 40.

Solution: Automated search for relevant solutions.

Hard alloys based on **Fe**-Mn-Cr-Ti-V-Ni-Al-Si-C-B.

Identification of compositions for hard alloys containing:

- martensite and ferrite
- austenite
- metastable austenite
- intermetallic phases stable over wide T-range

Hard alloys based on **Fe**-Mn-Cr-Ti-V-Ni-Al-Si-C-B.

\rightarrow	SEAR	CH	I MA	\TR	X		
Fe	60	70	80				
С	0	5	10	20			
В	0	5	10	20			
Mn	0	5	10	20			
Cr	0	5	10	20			
Ti	0	5	10	20			
V	0	5	10	20			
AI	0	5	10	20			
Ni	0	10				(av	/(

0 10

3277 combinations with $\Sigma n_i = 100$.

(avoid Ni to avoid cold welding)

Si

Hard alloys based on **Fe**-Mn-Cr-Ti-V-Ni-Al-Si-C-B.

Identification of compositions for hard alloyscontaining: \rightarrow SEARCH CRITERIA

- martensite and ferrite @RT: BCC, @HT: BCC/FCC
- austenite @RT: FCC, @HT: FCC
- metastable austenite ${}^{@}_{\text{RT:}} G_{\text{FCC}} = G_{\text{BCC}}, @$ HT: FCC ${}^{@}_{\text{RT:}} G_{\text{FCC}} = G_{\text{HCP}}, @$ HT: FCC
- intermetallic phases stable over wide T-range
 Equilibrium @RT = Equilibrium @HT

Hard alloys based on **Fe**-Mn-Cr-Ti-V-Ni-Al-Si-C-B.

Identification of compositions for hard alloys containing: \rightarrow SEARCH CRITERIA

- martensite and ferrite @RT: BCC, @HT: BCC/FCC
- austenite @RT: FCC, @HT: FCC
- metastable austenite ${}^{@}_{\text{RT: G}_{\text{FCC}}=\text{G}_{\text{BCC}}, @}_{\text{HT: FCC}} = G_{\text{HCP}}, @}_{\text{HT: FCC}}$
- intermetallic phases stable over wide T-range
 Equilibrium @RT = Equilibrium @HT

Searching for austenite

3277 compositions tested @T=300, 500, 700°C.

2380 compositions without Ni.

- 280 compositions without BCC phase @700°C.
 - 53 compositions without BCC phase @500°C.
 - 5 compositions without BCC phase @300°C.

Searching for austenite

5 compositions without BCC phase @300°C:

Fe	С	В	Mn	Cr	Al	Ti	V	Si	FCC fraction
60	0	0	20	0	0	20	0	0	40%

→ Input for Fact-Optimal

Fact-Optimal

Fact Optimal		– 🗆 X	Al:Va
ent 🥤 <u>F</u> unction Builder <u>H</u> el	lp		AI:C
operties Variables Constraints Pa	arameters Results		Al:B
Optimization • I property	C 2nd property	C Characteristic points on liquidus surface	Cr:Va
○ minimize □ T liq ● maximize □ log(○ target □ log(Temperature Mass/mol(Fe:Va) Activity Yapor Pressure Density Volume Viscosity (Pa.s) Function H Cp S Bulk Modulus Electrical Conductivity Include cost \$ ○ yes • no	puidus) (maximize maximize target Temperature Mass/mol Activity Vapor Pressure Density Volume Viscosity (Pa.s) Function H Cp S Equilib File:	Linked? ☐ log() All local minima Precision : Normal Sigma = 10 Composition >= 0.1% High Sigma = 100 Composition >= 0.001 % Closest to initial point Resume from last calculation	 □ Cr:B ☑ Fe:Va □ Fe:C □ Fe:B □ Mn:Va □ Mn:C □ Mn:B □ Si:Va □ Si:C □ Si:B □ Ti:Va □ Ti:C □ Ti:B □ V:Va

10 A

Fact-Optimal

🗘 Fact	Optimal		>	<	
Recent	f Eunction Builder Help				
Properti	es Variables Constraints Parameters Results				
Compo	sition Variables				
No.	Species MIN	ALL MAX ALL Initial Value	ALL Q-Bandom		
No		N MAX Initial Value			
No	Species		MIN	MAX	Initial Value
1	Fe		0.6	0.8	0.65
2	С		0	0.05	0
3	В		0	0.05	0
4	Mn		0.1	0.2	0.16
5	Cr		0	0.1	0
6	Al		0	0.1	0
7	Ti		0.1	0.2	0.19
8	V		0	0.1	0
9	Si		0	0.1	0
	essure MIN : 1 MAX : 10 precision :	1 Initial Value : 1	Next >>		
UNITS	emperature : °C , Mass : mol			1	

Fact-Optimal

⊂ Small ⊙ Medium ⊂ Large

存 Fact Optimal	- 🗆 X
<u>R</u> ecent f <u>F</u> unction Builder <u>H</u> elp	
Properties Variables Constraints Parameters Results	
Stop 0:13:56	Status : Done. Continue Run >> 600 1 0 100 0 1 100 100 23 0 -98 -1.9999
Number of Equilib calculations: 283/300	618 26 0 200 0 0 158 0 0 -999999999 2 -1 612 28 1 198 1 2 156 1 2 -0.325013000000
Best answer so far :	×
Mass/mol{Fe:Va} : 3.390E-01	
	Results
Last solution :	4.002-01
Species mol Fe 0.615 C 0.027 B 0	5 3.00E-01
Mn 0.2 Cr 0 Constraints : AI 0	9 2.00E-01-
Ti 0.157 V 0 Si 0.001	Sign 2.00E-01
	2.78E-17 0 50 100 150 200 250
	# of Calculations
UNITS Temperature : °C , Mass : mol	

Searching for austenite

Fe	С	В	Mn	Cr	Al	Ti	V	Si	FCC fraction
60	0	0	20	0	0	20	0	0	40%
61.5	2.7	0	20	0	0	15.7	0	0.1	54%

53.7 mol
3.1 mol
2.7 mol
12.5 mol
0.1 mol

Outline

- Contributing to WnM
- Using SpMCBN database
- Navigating 10-D chemical space
- Predicting phase formation

Predicting phase formation

SiC content $\alpha = 30\%$

Predicting phase formation

С	Si	Mn	Cr	Ni	V	Al	Fe
0.059	1.95	23.72	14.51	0.70	22.33	0.88	35.84

Phase formation as $f(\alpha,\beta,T)$

- α: SiC content
- β: intermixing between powder and substrate

С	Si	Mn	Cr	Ni	V	Al	Fe		
0.05	0.50	1.00	18.00	8.00	0.00	0.00	72.45		

Thank you for your attention!

