This presentation is based on the following paper: Moritz to Baben, Marcus Hans, Daniel Primetzhofer, Simon Evertz, Holger Ruess & Jochen M. Schneider (2016): Unprecedented thermal stability of inherently metastable titanium aluminum nitride by point defect engineering, Materials Research Letters, <u>http://dx.doi.org/10.1080/21663831.2016.1233914</u>

Thermodynamic Modelling of Physical Vapor Deposition (PVD)

M. to Baben^{1,2}, M. Hans², D. Primetzhofer³, J.M. Schneider², K. Hack¹

1: GTT-Technologies 2: Materials Chemistry, RWTH Aachen University 3: Applied Nuclear Physics, Uppsala University GTT User Meeting, 29.6.2016

CONTENT

- BACKGROUND
- VAPOR GENERATION
- THIN FILM DEPOSITION
- APPLICATION

BACKGROUND: Physical Vapor Deposition

BACKGROUND: Physical Vapor Deposition

CONTENT

- BACKGROUND
- VAPOR GENERATION
- THIN FILM DEPOSITION
- APPLICATION

BACKGROUND: Physical Vapor Deposition

• Thermal evaporation

VAPOR GENERATION: Composition of vapor

VAPOR GENERATION: Composition of vapor

VAPOR GENERATION: Cohesive energy rule

VAPOR GENERATION: Cohesive energy rule

 $E_{input} = 178^* \Delta H_{f,vap}$. Experimental data from [2]. [2] Anders et al., Proc. ISDEIV (2004) 272.

CONTENT

- BACKGROUND
- VAPOR GENERATION
- THIN FILM DEPOSITION
- APPLICATION

THIN FILM DEPOSITION: Theory Example: (Ti,AI)N

THIN FILM DEPOSITION: Theory Example: (Ti,AI)N

THIN FILM DEPOSITION: Theory Example: (Ti,AI)N

CONTENT

- BACKGROUND
- VAPOR GENERATION
- THIN FILM DEPOSITION
- APPLICATION

APPLICATION Example: (Ti,Al)N_x

Mayrhofer et al., APL 83 (2003) 2049.

c-TiAIN ~800°C → c-TiN + c-AIN ~1000°C → c-TiN + w-AIN

Rachbauer et al., Surface & Coatings Technology 204 (2010) 1811.

APPLICATION Stoichiometry prediction?

flux(reactive gas) >> flux(metals) Example (Ti,Al)N: $flux(N_2) = 3*10^{17}$ molecules/s*cm² $flux(Ti+Al) = 4*10^{15}$ atoms/s*cm²

Ti

Thermodynamic Property	How modelled?
G(Ti : Va)	SGTE Solutions Database
G(Ti : N)	SGTE Solutions Database
G(AI : Va)	SGTE Solutions Database
L(AI,Ti : Va;0)	SGTE Solutions Database
L(AI,Ti : Va;1)	SGTE Solutions Database
L(AI,Ti : Va;2)	SGTE Solutions Database
L(Ti : N,Va;0)	SGTE Solutions Database
L(Ti : N,Va;1)	SGTE Solutions Database

Thermodynamic Property	How modelled?
G(AI : N)	ab intitio
G(Va : N)	ab intitio
G(Va : Va)	ab intitio
L(Ti,AI : N;0)	ab intitio
L(Ti,Va : N;0)	ab intitio
L(AI,Va : N;0)	ab intitio
L(Ti,Al,Va : N;0)	ab intitio
L(Ti,AI : N,Va;0)	ab intitio
L(AI : N,Va;0)	ab intitio
L(AI : N,Va;1)	ab intitio

- 16 ab initio calculations using VASP (Vienna ab initio simulation) package
- 64 atom unit cell
- Energy of formation as f(composition) $\rightarrow \Delta H^{298K}$, L

Thermodynamic Property	How modelled?
G(AI : N)	ΔH^{298K} = -2.61 eV/atom
G(Va : N)	
G(Va : Va)	ab intitio
L(Ti,Al : N;0)	ab intitio
L(Ti,Va : N;0)	ab intitio
L(AI,Va : N;0)	$\Delta H^{298K} = -0.874 \text{ eV/atom}$
L(Ti,Al,Va : N;0)	ab intitio
L(Ti,AI : N,Va;0)	ab intitio
L(AI : N,Va;0)	ab intitio
L(AI : N,Va;1)	ab intitio

Extrapolated from $(AI_{1-x}Va_x)N$ $\rightarrow \Delta H^{298K}(Va:N) = 5.74 \text{ eV/atom}$ Extrapolated from $(Ti_{1-x}Va_x)N$ $\rightarrow \Delta H^{298K}(Va:N) = 6.23 \text{ eV/atom}$

Thermodynamic Property	How modelled?
G(AI : N)	ΔH^{298K} = -2.61 eV/atom
G(Va : N)	$\Delta H^{298K} = 5.98 \text{ eV/atom}$
G(Va : Va)	ab intitio
L(Ti,AI : N;0)	ab intitio
L(Ti,Va : N;0)	ab intitio
L(AI,Va : N;0)	ΔH^{298K} = -0.874 eV/atom
L(Ti,Al,Va : N;0)	ab intitio
L(Ti,AI : N,Va;0)	ab intitio
L(AI : N,Va;0)	ab intitio
L(AI : N,Va;1)	ab intitio

 ΔH^{298K} (Va:Va) from "alchemical" interpretation of Hess's law:

Thermodynamic Property	How modelled?
G(AI : N)	ΔH^{298K} = -2.61 eV/atom
G(Va : N)	$\Delta H^{298K} = 5.98 \text{ eV/atom}$
G(Va : Va)	
L(Ti,AI : N;0)	ab intitio
L(Ti,Va : N;0)	ab intitio
L(AI,Va : N;0)	ΔH^{298K} = -0.874 eV/atom
L(Ti,Al,Va : N;0)	ab intitio
L(Ti,AI : N,Va;0)	ab intitio
L(AI : N,Va;0)	ab intitio
L(AI : N,Va;1)	ab intitio

 ΔH^{298K} (Va:Va) from "alchemical" interpretation of Hess's law:

Thermodynamic Property	How modelled?
G(AI : N)	ΔH^{298K} = -2.61 eV/atom
G(Va : N)	$\Delta H^{298K} = 5.98 \text{ eV/atom}$
G(Va : Va)	
L(Ti,Al : N;0)	ab intitio
L(Ti,Va : N;0)	ab intitio
L(AI,Va : N;0)	ΔH^{298K} = -0.874 eV/atom
L(Ti,Al,Va : N;0)	ab intitio
L(Ti,AI : N,Va;0)	ab intitio
L(AI : N,Va;0)	ab intitio
L(AI : N,Va;1)	ab intitio

APPLICATION Stoichiometry prediction?

 $(Ti,AI)N_1$

 $c_{M-vac} = c_{Schottky}$

 $(Ti,AI)N_{1.02}$ $c_{M-vac} = 2 \%$

ΔE

$$D_{reduced} = c_{vac} * exp(-E_A/kT)$$

Equilibrium:

$$Ti_{0.5}Al_{0.5} + \frac{x}{2}N_2 \leftrightarrow Ti_{0.5}Al_{0.5}N_x$$
 \rightarrow (Ti,AI)N_{1.02} \rightarrow c_{M-vac} = 2 %

 $(Ti,AI)N_{1.02} \rightarrow (Ti,AI)N$ $\rightarrow \Delta T = 460^{\circ}C$

Ti Al

Ti/(Ti+Al) > 0.6 Al/(Ti+Al) > 0.7

as deposited

c_{M-vac} = 9% (poisoned target)

APPLICATION Conclusion 1/3

Thermodynamic Property	How modelled?
G(AI : N)	ab intitio
G(Va : N)	ab intitio
G(Va : Va)	ab intitio
L(Ti,Al : N;0)	ab intitio
L(Ti,Va : N;0)	ab intitio
L(AI,Va : N;0)	ab intitio
L(Ti,Al,Va : N;0)	ab intitio
L(Ti,Al : N,Va;0)	ab intitio
L(AI : N,Va;0)	ab intitio
L(AI : N,Va;1)	ab intitio

Ab initio calculations can be used to extract thermodynamic data efficiently (16 calculations \rightarrow 10 thermodynamic parameters).

Vacancies can be modelled on both sublattices without computational difficulties.

APPLICATION Conclusion 2/3

Thermodynamic equilibrium between the growing film and N₂ leads to metal vacancies.

Metal vacancies lead to low thermal stability of $(Ti,AI)N_x$.

APPLICATION Conclusion 3/3

Point defect engineering increases thermal stability of (Ti,AI)N_x by ~400°C.

Change name of commercially available coatings to "Titanium-Aluminium-Vacancy Nitride"?

THANK YOU FOR YOUR ATTENTION!

The work at Materials Chemistry, RWTH Aachen University, was done in the framework of the DFG collaborative research center SFB-TR 87.

