Data Assessments for the ALLEE Project

M. Schick, K. Hack

GTT Workshop, Herzogenrath June 29th – Julyst 2016

Outline:

The binary system AI-Zr:

- $C_p(T)$ -curves of Al₃Zr & AlZr (Neumann-Kopp)
- Refinement of the Neumann-Kopp approach and comparison to exp. data
- Optimisation of the binary system AI-Zr using improved c_p functions

Refinement procedure applied to further compounds $- AI_3Ni$, " $AI_{13}Fe_4$ " and " $AI_{10}Fe_3Ni$ "

Evaluation of recent publication by Q. Zhao et al.¹: *Influences of Fe, Si and homogenization on electrical conductivity and mechanical properties of dilute Al-Mg-Si alloy*

¹Q. Zhao, Z. Qian, X. Cui, Y. Wu, X. Liu, JALCOM 666 (2016) 50

The binary system Al-Zr:

GTT-Technologies

The binary system AI-Zr:

$c_{p}(T)$ curves, examples (Al₃Zr, AlZr) :

melting points of pure elements \Rightarrow artefacts in c_p curves

if no further data available:

procedure of refinement

1. refit c_p-curve with (standard) polynomial function:

$$C_{p} = a_{0} + a_{1} \cdot T + a_{2} \cdot T^{-2} + a_{3} \cdot T^{2} + (a_{4} \cdot T^{3})$$

- 2. recalculate melting temp. (peritectic temp.) of compound (optimisation of $\Delta H_{\rm f}^{298}$ and S^{298})
- 3. recalculate invariant equilibria where compound is involved

GTT-Technologies

Refinement of Neumann-Kopp:

GTT-Technologies

C_p refit for Al₃Zr:

melting temperature: T_{L} =1856.4 K (Wang et al., N-K C_{p})

Experimental data for C_p :

GTT-Technologies

C_p measurements for Al₃Zr by R. Kemsies, Rostock:

exp. data fitted nicely by standard polynomial function for C_p , but:

maximum temperature for exp. data quite low $(T_{max} = 858 \text{ K}),$

melting temperature rather high (T_{L} =1856.4 K)

no exp. data in the range between 858 –1856 K !

Experimental data for C_p:

GTT-Technologies

comparison between simple and refined Neumann-Kopp approach, and experimental data for $C_p(Al_3Zr)$

problem:

no exp. data available in the range between 858 –1856 K !

possible way: linear extrapolation of $C_p(T)$ curve with constant slope

another possible way: use of *ab-initio data* (planned)

Optimisation:

optimisation of ΔH_{f}^{298} and S^{298} for refitted function $C_{p}(T)$:

Optimisation:

GTT-Technologies

Comparison of invariant equilibria involving Al₃Zr:

inv. equilibrium	T/K (Wang et al.)	T/K (after opt.)
$Liquid \leftrightarrows Al_2Zr + Al_3Zr$	1856.2	1857.7
Liquid ≒ Al ₃ Zr	1856.4	1858.6
Liquid + Al ₃ Zr ≒ FCC_A1	933.8	933.8

Comparison of ΔH_{f}^{298} values for $Al_{3}Zr^{1}$ and $Al_{2}Zr^{1}$:

compound	optimised	Colinet ¹		
	kJ*mol(at)⁻¹	VASP	DSC	Calomtr.
Al ₃ Zr	-47.5	-46.97	-48.4	-44.4
Al ₂ Zr	-55.3	-52.02	-52.1	-49.0

¹New literature: C. Colinet, J.-C. Tedenac, Calphad 54 (2016)6

Optimisation:

GTT-Technologies

binary system AI-Zr optimised with improved c_p(AI₃Zr) and solubility of Zr in Al(fcc) and LIQUID²

²T. Knych et al., Archives Met. Mater. 56(3) (2011) 685

The binary system Al-Ni:

GTT-Technologies

binary phase diagram:

heat capacity c_p(Al₃Ni):

The binary system Al-Fe:

GTT-Technologies

AL13FE4 is non-stoichiometric (solution phase), modelled (Al)₃₂(Fe)₁₂(Al,Va)₇

The ternary compound Al₁₀Fe₃Ni:

GTT-Technologies

composition $AI_{10}Fe_3Ni$ corresponds to non-stoichiometric phase $\tau_2 = AI_5(Fe,Ni)_2$ (line compound) in AI-Fe-Ni

Publication found recently:

Influences of Fe, Si and homogenization on electrical conductivity and mechanical properties of dilute AI-Mg-Si alloy Q. Zhao, Z. Qian, X. Cui, Y. Wu, X. Liu, JALCOM 666 (2016) 50

- ⇒ Of interest: influence of Fe on the solubility of Si in Al(fcc) and LIQUID
- ⇒ Authors argue: ternary eutectic phase α -Al₈Fe₂Si is formed upon solidification, which leads to improved electrical & mechanical properties

GTT-Technologies

GTT-Technologies

Sample preparation:

- **1.** melting together pure elements, $T = 750^{\circ}C$
- 2. *T* = 720°C, 10 min., slag removing
- 3. casting, mould temp. (200°C), solidification
- 4. heating $T = 510^{\circ}$ C, 2h, quenching (water)
- 5. "Ageing": *T* =175°C, 9h, cooling (air)
- 6. "homogenisation", $T \approx T_L^{Al}$ (660°C), time ?

sample	W _{AI}	W _{Fe}	W _{Mg}	W _{Si}
1	0.9915	0.0000	0.0050	0.0035
2	0.9905	0.0010	0.0050	0.0035
3	0.9895	0.0020	0.0050	0.0035
4	0.9890	0.0020	0.0050	0.0040
5	0.9885	0.0020	0.0050	0.0045
6	0.9880	0.0020	0.0050	0.0050

GTT-Technologies

ternary eutectic phase α -Al₈Fe₂Si ($\cong \tau_5$) is stable at $T = 750^{\circ}$ C

GTT-Technologies

does α -Al₈Fe₂Si ($\cong \tau_5$) form during casting & solidification?

GTT-Technologies

Annealing at *T* = 510°C:

GactSage™

AI

 α -Al₈Fe₂Si ($\cong \tau_5$) is not stable any more \Rightarrow Al₉Fe₂Si₂ ($\cong \tau_6$) !

⇒ upon annealing τ_5 may react to form stable phases ⇒ sample compositions in three phase region: DIAMOND_A4 + FCC_A1 + τ_6

GTT-Technologies

The authors want to prove formation of phase α -Al₈Fe₂Si by EDS:

composition of phase α-Al₈Fe₂Si according to formula:

	AI	Fe	Si
mole%	72.73	18.18	9.10
weight%	60.69	31.40	7.90

none of the EDS analyses matches nominal composition ! \Rightarrow no experimental proof for existence of α -Al₈Fe₂Si

GTT-Technologies

Thanks for your attention !

