GTT Workshop 2016, Herzogenrath

Thermodynamic dataset of electrode materials in lithium ion batteries

Keke Chang, Bengt Hallstedt, Denis Music

chang@mch.rwth-aachen.de RWTH Aachen University

Julian Fischer, Carlos Ziebert, Sven Ulrich, Hans J. Seifert Karlsruhe Institute of Technology (KIT)

Background

Ab initio and empirical method

CALPHAD and thermodynamic description

- The LiNiO₂–NiO₂ system
- The LiCoO₂–CoO₂ system
- The Li(Co,Ni)O₂–(Co,Ni)O₂ system

Cell voltages of Li ion cells

Summary and outlook

Crystal structures of $LiCoO_2$ with different stacking of Li layers.

Background

 Phase changes in cycling of Li/O3-LiCoO₂:

O3, O3' (ordered), M, H1-3 and O1

$O3-LiCoO_2$

- O3-LiNiO₂
- High price

- Safety problem

- Difficult to synthesize

$O3-Li(Co, Ni)O_2$

- Co and Ni have unlimited solid solubility;

- Can be deintercalated to O3- $Li_{0.4}(Co, Ni)O_2;$
- Can remain as the layered O3 structure.

Keke Chang

Ab initio and empirical method

Gibbs energy function:

$${}^{o}G_{m}^{\text{LixCoyOz}} - x_{\text{Li}}{}^{o}G_{\text{Li}}^{\text{BCC}A2} - x_{\text{Co}}{}^{o}G_{\text{Co}}^{\text{HCP}A3}$$
$$- 0.5 \cdot x_{\text{O}}{}^{o}G_{\text{O}_{2}}^{\text{GAS}} = \Delta H - \Delta S \cdot T \qquad (1)$$

Cell voltage of a Li/Li⁺ cell:

$$V = -\frac{\mu_{\rm Li}^{\rm Cathode}}{F}$$
(2)

The flow chart of the present theoretical approaches.

[Ref] K. Chang, B. Hallstedt, D. Music, Chem. Mater. 24 (2012) 97-105.

Ab initio and empirical method

Calculated cell voltages at 300 K compared to the experimental data, CALPHAD calculation and the previous theoretical results.

[Ref] K. Chang, B. Hallstedt, D. Music, Chem. Mater. 24 (2012) 97-105.

Crystal structures of $LiCoO_2$ with different stacking of Li layers.

Background

 Phase changes in cycling of Li/O3-LiCoO₂:

O3, O3' (ordered), M, H1-3 and O1

$O3-LiCoO_2$

O3-LiNiO₂

- High price - Safety problem - Difficult to

synthesize

O3-Li(Co, Ni)O₂

- Co and Ni have unlimited solid solubility;

- Can be deintercalated to O3- $Li_{0.4}(Co, Ni)O_2;$
- Can remain as the layered O3 structure.

Keke Chang

Outline Li ion batteries

Background

Ab initio and empirical method

CALPHAD and thermodynamic description

- The LiNiO₂–NiO₂ system
- The LiCoO₂–CoO₂ system
- The Li(Co,Ni)O₂–(Co,Ni)O₂ system

Cell voltages of Li ion cells

Summary and outlook

CALPHAD

CALculation of **PHA**se **D**iagrams

Models for individual phases:

- (1) Ordered and disordered phases
 - $G_m^{\text{Ord}} = G_m^{\text{Dis}}(x_i) + G_m^{\text{Ord}}(y_i^s) G_m^{\text{Ord}}(y_i^s = x_i)$
- (2) End-member compound (C_p well-defined)

$${}^{\circ}G_{m}^{\text{O3-LiCoO}_{2}} - H_{\text{Li}}^{\text{SER}} - H_{\text{Co}}^{\text{SER}} - 2H_{\text{O}}^{\text{SER}}$$
$$= A + B \cdot T + C \cdot T \cdot \ln T + D \cdot T^{2} + E \cdot T^{1}$$

(3) End-member compound (Neumann-Kopp rule)

$${}^{\circ}G_{m}^{O3-C_{0}O_{2}} - H_{C_{0}}^{SER} - 2 H_{O}^{SER}$$
$$= A + B \cdot T + {}^{\circ}G_{m}^{C_{0}} + {}^{\circ}G_{m}^{O_{2}}$$

[Ref 1] http://www.sgte.org/ [Ref 2] M. Hillert, J. Alloys Compd. 320 (2001) 161-176. [Ref 3] I. Ansara, N. Dupin, H.L. Lukas, B. Sundman, J. Alloys Compd. 247 (1997) 20-30.

Keke Chang

I. LiNiO₂–NiO₂ system

Enthalpies of formation for O3-Li_xNiO₂ (0 < x < 1) relative to O3-NiO₂ and O3-LiNiO₂.

[Ref] K. Chang, B. Hallstedt, D. Music, CALPHAD 37 (2012) 100-107.

Calculated phase diagram of the $LiNiO_2$ - NiO_2 pseudo-binary system compared with the experimental data: (a) from 300 K to 450 K; (b) at 298 K.

[Ref] K. Chang, B. Hallstedt, D. Music, CALPHAD 37 (2012) 100-107.

Fig. (a) Heat capacity data of O3-LiCoO₂ from literature compared with the C_p function used in this work. The result from the Neumann-Kopp rule [Ref] is also presented. (b) Calculated enthalpies of formation for O3-, O3'-, and H1-3 relative to O3-LiCoO₂ and O3-CoO₂ compared with literature data.

[Ref] K. Chang, B. Hallstedt, D. Music, J. Fischer, C. Ziebert, S. Ulrich, H.J. Seifert, CALPHAD 41 (2013) 6

III. The O3 structural Li(Co,Ni)O₂–(Co,Ni)O₂ system

→ The LiCoO₂–CoO₂ and LiNiO₂–NiO₂ systems are considered to be ideally mixing.

[Ref] K. Chang, B. Hallstedt, D. Music, CALPHAD 37 (2012) 100-107.

Cell voltages of Li ion cells

Summary

- ✓ Thermodynamic dataset obtained.
- Experimental and *ab initio* data well reproduced.
- ✓ Cell voltage predicted.

Outlook

- Amorphous anode
- Thin film electrode for LIB
- Thermodynamic dataset of Si-based systems

Acknowledgement:

Thank you for your attention!

