Recent advances in modelling of coal ash behaviour in the VerSi Project

GTT User Meeting, 29th June to 1st July 2016 K. Hack¹, T.Jantzen¹, M. Dohrn², M. Müller²

¹GTT-Technologies ²FZJ IEK-2

Motivation

Slagging and Sintering must be technically manageable or preventable !

The Project VerSi

- Project Leader: University of Stuttgart, IFK
 Institut für Feuerungs- und Kraftwerkstechnik
- Partners: Research Center FZJ-IEK2 (Jülich) SMEs: RECOM Services (Stuttgart), GTT-Technologies (Herzogenrath)
- Industrial Supporters: EON, Clyde-Bergemann, Vattenfall, ALSTOM

Goals

- Collection of plant data concerning ash/slag formation and deposits
- Generation of a suitable thermodynamic database
- Generation of a model based on interlinked local equilibria
- Generation of a model based on CFD
- Comparison of plant data with models
- Adjustment of models and practical applications

Work Plan VerSi project

- Data and Model for Hard Coal fired Power Plant
- Data and Model for Lignite fired Power Plant
- Model adaptation for use in plant environment

Ash compositions for Hard Coals

GTT-Technologies

		Columbia	South Afr	. Russia	USA
Component	Unit	SKC	SKK	SKR	SKU
AI2O3	%	14.6	25.9	22.1	20.6
CaO	%	2.1	7.1	4.9	3.7
Fe2O3	%	15.5	15.4	6.8	14.6
K2O	%	1.4	0.7	2.9	2.4
MgO	%	1.1	0.1	0.2	0.9
Na2O	%	1.8	0.2	1.3	0.7
P2O5	%	0.1	1.5	0.5	0.2
SiO2	%	60.7	45.4	57.1	52.6
SO3	%	1.9	2.5	3.2	3.0
TiO2	%	0.8	1.4	0.9	1.1

Conclusion: The Al₂O₃-SiO₂-X subsystems are of major importance ! The most important third component is $Fe_2O_3 \rightarrow FeO_x$

Note: Inclusion of TiO₂ is in progress.

GTT-Technologies

57

GTT-Technologies

Fig. 3.184. Liquidus surface in the system Al_2O_3 -FeO_x-SiO in air after Muan [4], as revised by Idink, Woermann [5].

Diagrams of Oxide Systems", Plate 9, publ. By American Ceramic Society and the Edward Orton, Jr., Ceramic Foandation, 1960.

Wt% Melt as f(T)

All phase amounts during melting of SKC

Inclusion of TiO₂

- Binary systems
 - AI-0
 - *Ti-O*
 - *AI-Ti*
 - AI_2O_3 -TiO₂
 - Mgo-TiO₂
- Ternary system
 - *AI-O-Ti*
 - *Al*₂*O*₃-*MgO*-*TiO*₂

Ti-O phase diagram

T.B. Massalski (ed), Binary Alloy Phase Diagrams, Second Edition, ASM International, Metals Park, OH 1990.

Isothermal section at 1100°C in Al-Ti-O

GTT-Technologies

Equilib., 23 [6], (2002), pp. 525-536.

Al

Isothermal section at 1100°C in Al₂O₃-MgO-TiO₂

Isopleth Al₂MgO₄-Mg₂TiO₄ in Al₂O₃-MgO-TiO₂

GTT-Technologies

Spinel – solid solution phase with end-members AI_2MgO_4 and Mg_2TiO_4 $(AI^{+3},Mg^{+2},Ti^{+4})_1(AI^{+3},Mg^{+2},Va)_2(Mg^{+2}, Va)_2(O^{-2})_4$

Model relevant Details of Boiler for Dust Combustion

Furnace chamber: SimuSage model

Furnace chamber model: User interface I

	Air supply: On average or partitioned in four a		
VE Prozessmodell	🙀 Coal1 Edit		
imeter Parameters2 Prozess Resultate Grafik	Konstituente	%	Ort
Kohlen Luft1	H20	52.3972201013215	NIA
Summe Kohle = 100 kg/s O Lambda = 0.8	Na2O	0.129809156307231	Anlage
	K2O	0.0254664044185653	Bekohlung
Kohle1 Definieren Kohle1 100 % OAmount:	CaO	0.774186527607638	Teilanlage
Kohle2 Definieren Kohle2 0 % Luft1.1 = 0 kg/s	MgO	0.333806403643055	Kohleprobenehmer
Kohle3 Definieren Kohle3 0 % Luft1.2 = 0 kg/s	Al2O3	0.252289580199826	Material
Luft1.3 = 0 kg/s	SiO2	0.865585891604302	Koble
Kessel Luft1.4 = 0 kg/s	Fe2O3	0.260313030969009	Konie
Kessel1 Temp = 1400 °C	TiO2	0.0177159249585819	Datum
	SO3	0.606917607351214	11.09.2001
Kessel2 Temp = 1300 °C	с	31.3574097131461	Zeit
Kessel3 Temp = 1200 ℃ Luft2 = 200 kg/s	02	10.3834237267784	06:00:00
	H2	2.5958559316946	
Splitter	SUM= 100% Import from Datab	ase	
Faktor Nassasche - Flüssig = 0.8	Data Source:		R
Faktor Nassasche - Fest = 0.5 Iterationsgenauigkeit = 0.01	C: \LocalData \GTT	_ANWENDUNGEN Model 2.3	ASIS-05V01.mdb
Faktor Rauchgasrückführung = 0.8	Browse	ProbenNr : 01-010-000	1 Import
CTART.	Reset	Clear Car	cel Create
SIARI			
portion of fluid / solid wet ash ortion of flue gas recirculation	mbustion cha ee areas	amber	

Furnace chamber model: Results I

Phases are compiled in characteristic groups:

Silicate melt Salt melt Solid oxides Solid sulphates others

Furnace chamber model: Results IIa Influence of coal blends on phase formation

GTT-Technologies

100% HKN

100% HKT

Furnace chamber model: Results IIb Influence of coal blends on phase formation

Scheme of the RWE model

Realisation with SimuSage, Part 1

Realisation with SimuSage, Part 2

Realisation with SimuSage, Part 2

Test of model compatibility

	Report Editor	<u>@</u>			RWE Proz	essmodell	
PageControl1.Process3.R_4>>		Parameters	Parameters2	Prozess	Resultate Grafik		
ChemDFI: Rank(From,To) FromUnit: ToUnit: Stream Type: Amount: Enthalpy: Temperature: Pressure:	$CO = 0.00022 \ \%mol$ $O2 = 3.72999 \ \%mol$ $CO = 0.00022 \ \%mol$						
Volume:	2.675E006 dm3					Report Editor	
ASlag-liq#1 Amount: Enthalpy: Constituen Al203 Si02 NaAl02 Ca0 Fe203 MgO Threshold Amount: 1 (kg], wt% (Nm3), mol%	0.03719 kMol -27184.3822 kJ ts: 0.00171487 kMol 0.0132291 kMol 0.00225709 kMol 0.011196 kMol 0.0012844 kMol 0.00638229 kMol E -3 ♥ ■ [kMol] Save	Kohle 1 100 %		P	ageControll.Proce ChemDFI: Rank(From,To): FromUnit: ToUnit: Stream Type: Amount: Enthalpy: Temperature: Pressure: Volume: ASlag-liq#1 Amount: Enthalpy: Constituents Al203 SiO2 NaAlO2	essTab.Kessel3_aus SIMEX (1, 2) Kessel3 OutputUnit ALL 21.8767 -1065748.0959 1200.00 1 2.675E006 0.03719 -27184.3820 s: 0.00171487 0.0132291 0.00225709	kMol kJ C bar dm3 kMol kJ kMol kMol kMol
P Crun W_Out2	$C_2WSC SF = 0$ $C_2WO AS2SC$	Kohle2 0 % Kohle3 0 %	Mixer	< (kg)	Threshold Amount: 1 E , wt% (Nm3], mol%	• [kMol] Save	Append

State of development

- First test: re-produce RWE model by appropriate choice of split factors
 - → All numerical values agree 1:1 !!!
- Now in progress: run model with split factors realising no wall-sticking and no silicate bypass, i.e. extend RWE-model by stages related to heat exchangers
- Next step: include silicate by-pass
- Then: include wall-sticking

Summary and Outlook

GTT-Technologies

SimuSage based model using interlinked local equilibria

- → Furnace chamber model with interactive user interface and direct access to RWE mineral analyses database
 - → First step into development of a proper process model for coal fired power plant
 - → Furnace chamber with recirculation of flue gas and input option for coal blends

To come: Optimisation calculations for coal blends as well as extension into boiler range and deposit modelling

(→VerSi project)

GTT-Technologies

THANK YOU VERY MUCH FOR YOUR ATTENTION !

