Modelling viscosity of molten oxides (HotVeGas PartII)

<u>Guixuan Wu¹</u>, Elena Yazhenskikh¹, Klaus Hack², Michael Müller¹ <u>g.wu@fz-juelich.de</u>

¹IEK-2, Forschungszentrum Jülich GmbH, Jülich, Germany ²GTT Technologies, Herzogenrath, Germany

Viscosity as a function of temperature and composition is of practical importance for the description of slag flow behavior in entrained flow gasifiers. The viscosity essentially depends on the structure, a comprehensive description of structural dependence is therefore required for the development of a new viscosity model. In the framework of the HotVeGas project, a structure based model recently developed for the fully liquid system SiO₂-Al₂O₃-CaO-MgO-Na₂O-K₂O-FeO-Fe₂O₃ is further extended to describe the viscosity of the P₂O₅containing systems in the Newtonian range. The structural treatment of P_2O_5 in multicomponent oxide systems is discussed. The preliminary results for the systems P₂O₅, P₂O₅-CaO, P₂O₅-Na₂O, P₂O₅-CaO-FeO, and P₂O₅-SiO₂-Al₂O₃-Na₂O are presented. Due to insufficient reliable experimental data for the assessment of model parameters, large deviations occur in some systems such as the quaternary system P₂O₅-SiO₂-Al₂O₃-Na₂O. Further assessment of the model parameters is necessary. Besides, the model parameters for FeO_x-containing systems need to be further modified for better description of the local viscosity maximum around the fayalite composition in the binary system SiO₂-FeO_x, which is analyzed in conjunction with the structrual information obtained from molecular dynamics simulations. The shift of viscosity maximum with repect to SiO₂ content in the ternary system SiO₂-Al₂O₃-Na₂O is also discussed using the different tricluster species calculated from molecular dynamics simulations.

Keywords:

viscosity, associate species, thermodynamic modelling, structure, molten slags, gasification