

USING FACTSAGE TO STUDY THE BEHAVIOR OF INORGANIC MATTER IN THERMAL CONVERSION OF BIOMASS

GTT-Technologies'18th Annual Users' Meeting June 29- July 1, 2016 F. Defoort

- **1.** Introduction
- **2.** Thermodynamic tools
- **3.** Thermodynamic simulation
 - 1. Volatilisation
 - 2. Ash behaviour
- **4.** Simplified tool to characterize biomass
- **5.** Conclusions

1. Introduction

- **2.** Thermodynamic tools
- **3.** Thermodynamic simulations
 - 1. Volatilisation
 - 2. Ash behaviour
- **4.** Simplified tool to characterize biomass

5. Conclusions

liten Ceatech

INORGANIC MATTER OF BIOMASS

- Many elements
 - Al, As, B, Ba, Ca, Cl, Cd, Cr, Cu, Fe, Hg, K, Mg, Mn, N, Na, P, S, Ti, V, Zn, Zr

Main elements

- Biomass
 - Wood and woody biomass Ca, Si, K
 - Agricultural residues Si, K, Ca
- Waste wood
 - Coated particulate panel Si, **Ti**, Ca
 - Painted wood **Ba**, Ti, Ca +**Zn**
 - Impregnated wood **Cu, Cr**, Ca (As)
- Solid Recovery Residues Ca, Si, S, Al, Fe, Na
- Minor elements As, Cd, Hg, Pb...

liten **PROBLEMATICS OF INORGANIC MATTER** Ceatech **Deposition on heat transfer surfaces** Fouling Corrosion of metallic part Volatilisation **Emissions of trace species and particles (aerosol)** Harmful to health Detrimental for catalyst **Slag formation in furnaces** Desirable for entrained flow reactor Undesirable for grate furnace and fluidized bed reactor Liquid **Bed agglomeration in fluidized beds** Defluidization

1. Introduction

2. Thermodynamic tools

- **3.** Thermodynamic simulation
 - 1. Volatilisation
 - 2. Ash behaviour
- **4.** Simplified tool to characterize biomass

5. Conclusions

- Shared by several laboratories at CEA Grenoble
 - microelectronics, batteries, material sciences, solar, biomass...
- Software based on minimization of the gibbs free energy
 - Factsage 7.0

Databases

- FACT databases
 - pure substances (FT53 FactPS)
 - solutions FToxid, FTsalt, FTmisc, FThall, FThelg, FTpulp, FTfrtz and FTOxCN, FSstel, SGnobl)
- GTT/FZJ databases (Tatjana Jantzen and Elena Yazhenskikh)
 - GTOX.4 (Al-Ca-Fe-Mg-K-Na-Si)
 - solid K-Ca and K-Mg silicates
 - GTOX.5 (+ Cr-Mn-P-S-Zn)

1. Introduction

2. Thermodynamic tools

3. Thermodynamic simulation

- 1. Volatilisation
- 2. Ash behaviour
- **4.** Simplified tool to characterize biomass

5. Conclusions

BIOMASS VOLATILISATION

• Substances database \rightarrow thermodynamic calculation of gas release

Wei , Sonwane , Kuramochi , Mojtahedi , Thy , Turn , Froment , Stemmler, Jensen

Composition of biomass

- Speciation of the gas phase?
- Comparison with experiments?

BIOMASS VOLATILISATION

• Gas phase speciation calculated with substances database

BIOMASS VOLATILISATION

• Gas phase speciation calculated with substances database

- Experimental evidence of gas phase speciation
 - Direct evidence
 - difficult to measure (MBMS)
 - Indirect evidence
 - deposit in Fluidized bed candle

Silica poor KCl deposit

Silica rich KCl deposit

Disagreement for silica poor

Liten BIOMASS VOLATILISATION

- Gas phase speciation calculated with different hypothesis
 - Bed material effect, reducing environment, try several solution database (Ftoxid, GTOX)
 - Strongest effect \rightarrow use a solution database (liquid phase)

ppmv dry gas	Fact53 Pure substance	FTOX Slag A	GTOX.4 LIOX	
HCI	0.1	0.4	0,9	
KCI	99.5	95	81	
КОН	253	93	40	KOH(g) decreased
% K in gas	78%	44%	29%	
Indirect evidence	K ₂ CO ₃ deposit calculated		KCI depos calculated	it J

Silica poor biomass (Calys)

- **1.** Introduction
- **2.** Thermodynamic tools

3. Thermodynamic simulation

- 1. Volatilisation
- 2. Ash behaviour
- **4.** Simplified tool to characterize biomass

5. Conclusions

Goal

Characterization of ash at the process temperature in oxidizing (combustion) or reducing (gasification) atmosphere

- Check liquid occurrence
- Methodology
 - Experiments
 - biomass ashed
 - pressed in pellet (0,5 to 1g)
 - annealed 4 to 6 h in air or H₂/CO₂ at T
 - « quench »
 - SEM-EDX and XRD
 - Thermodynamic simulation
 - Database: GTOX.4, FTsalt, FactPS
 - Input data
 - mass and composition of pressed pellet
 - gas volume injected during annealing duration

- → T<1300°C
- \rightarrow N₂, air, H₂/CO/CO₂
- → 50 200 NI/h
- → Quench : 2 to 20 °C/s

• Example four biomass ashes

• Boigelot & AI (22nd EUBC&E 2014 Hamburg 2BV.2.40, WasteEng 2014 Poster n°386)

Biomass dry a content 815°C	ash (wt%)	Ash content (wt%)	SiO ₂	CaO	K ₂ O	Fe ₂ O ₃	MgO	P ₂ O ₅	Al ₂ O ₃	Na₂O	TiO ₂	MnO ₂	CIO	SO3	с
Wood	0,2%	Wood	19,4	23,2	15,5	5,9	6,1	3,7	5,2	0,8	0,4	2,0	0,1	0,9	7,0
Calys	4,4%	Calys	10,8	44,4	11,6	2,0	2,9	9,5	0,6	0,2	0,1	0,1	0,6	1,4	6,7
Wheat straw	8,3%	Weat Straw	65,4	7,0	14,5	1,4	1,6	3,7	0,6	0,4	0,1	0,1	0,9	1,1	3,0
Rice husk	14%	Rice Husk	79,5	2,2	5,2	0,6	0,8	1,3	0,2	0,2	0,1	0,2	0,3	0,2	5,3

Boigelot & Al WasteEng Rio de Janeiro 2014 Poster n°386

- Liquid amount
 - Good agreement with calculations for Wheat Straw and Rice husk
 - Not possible to quantify by SEM-EDS or XRD for Wood and Calys

- Solid phase (XRD)
 - Phosphates Ca_xK_yPO₄ KCaFeP_xO_y (XRD) not existing in GTOX.4
 - K-silicates ($K_2Ca_2Si_9O_{21}$, KFeSi₃O₈) calculated not existing in XRD databases

Liquid composition

 For Wheat Straw and Rice husk calculation depleted in Si and Ca and enriched in K due to missing K_xCaP compounds/solutions in GTOX.4

Boigelot & Al WasteEng Rio de Janeiro 2014 Poster n°386

1. Introduction

2. Thermodynamic tools

3. Thermodynamic simulations

- 1. Volatilisation
- 2. Ash behaviour
- **4.** Simplified tool to characterize biomass

5. Conclusions

- Thermodynamic equilibrium calculations with « equilib » module not very easy to carry out
- Simple tools are existing based on indices but are empirical
- Need a simple tool as scientific as possible

• We propose a tool based on

- Simplified ternary and quaternary phase diagram (isothermal section)
 - Ash composition
 - Process requirements

Fluidized Bed Reactor, Grate Boiler	Entrained Flow Reactor
100% solid (liquid undesirable)	<mark>100% liquid</mark>
850-1000°C	1200-1400°C

• Computation with

- « Phase diagram » module of Factsage 7.0
- GTT/FZJ database GTOX.5
- 4 temperatures (850, 1000, 1200, 1400°C)
- Main oxides: CaO-K₂O-SiO₂-MgO-P₂O₅-Al₂O₃-Na₂O
- To be published in proceeding
 - L. De Fusco, F. Defoort in Venice 2016 6th international symposium on energy from biomass and waste 14-17/11/2016

liten Ceatech

SIMPLIFIED TOOL TO CHARACTERIZE BIOMASS

- Simplification of the phase diagram
 - Remove all tie lines, solidsolid and solid-liquid equilibria lines
 - Keep only liquidus and solidus lines
 - Show 100% liquid and 100% solid domain

CEALECH SIMPLIFIED TOOL TO CHARACTERIZE BIOMASS

Temperature effect represented in one diagram

SIMPLIFIED TOOL TO CHARACTERIZE BIOMASS

liten

Ceatech

• Same representation calculated for 15 ternary phase diagrams

				+10%	Temperature
Nr. #		Oxides			[°C]
1	CaO	K ₂ O	SiO ₂	-	850; 1000; 1200;
					1400
2	CaO	K ₂ O	P_2O_5	-	850; 1000; 1200
3	SiO_2	K ₂ O	Al_2O_3	-	850; 1000; 1200
4	MgO	K ₂ O	P_2O_5	-	850; 1000; 1200
5	MgO	K ₂ O	SiO_2	-	850; 1000; 1200
6	CaO	P ₂ O ₅	SiO ₂	-	850; 1000; 1200
7	CaO	P_2O_5	FeO	-	850; 1000; 1200
8	SiO ₂	P_2O_5	Al_2O_3	-	850; 1000; 1200
9	MgO	P_2O_5	FeO	-	850; 1000; 1200
10	MgO	P_2O_5	SiO_2	-	850; 1000; 1200
11	CaO	Na ₂ O	SiO ₂	-	850; 1000; 1200
12	CaO	Na ₂ O	P_2O_5	-	850; 1000; 1200
13	SiO ₂	Na ₂ O	Al_2O_3	-	850; 1000; 1200
14	MgO	Na ₂ O	P_2O_5	-	850; 1000; 1200
15	MgO	Na ₂ O	SiO_2	-	850; 1000; 1200

Quaternary diagram

SIMPLIFIED TOOL TO CHARACTERIZE BIOMASS/WASTE

• Quaternary diagram

liten

Ceatech

• 4th oxide Al_2O_3

$$\frac{Al_2O_3}{CaO + K_2O + SiO_2} = 0.\,\bar{1}$$

- Positive effect of Al₂O₃
 - Solid domain increases
 - Liquid domain disapears
- 4th oxide calculated
 - Al₂O₃, MgO, P₂O₅, FeO, SO₃

Liten SIMPLIFIED TOOL TO CHARACTERIZE BIOMASS/WASTE

• Strong uncertainty in key ternary phase diagram (CaO-K₂O-SiO₂)

• No data in CaO-K₂O (2 hypothesis GTOX4 \rightarrow GTOX5)

Liten SIMPLIFIED TOOL TO CHARACTERIZE BIOMASS/WASTE

• Strong uncertainty in key ternary phase diagram (CaO-K₂O-SiO₂)

- No data in CaO-K₂O (2 hypothesis GTOX4 \rightarrow GTOX5)
- Existence of some ternary compounds not confirmed by recent literrature
- No data in many ternary compounds

- **1.** Introduction
- **2.** Thermodynamic tools
- **3.** Thermodynamic simulation
 - 1. Volatilisation
 - 2. Ash behaviour
- **4.** Simplified tool to characterize biomass

5. Conclusions

Thermodynamic equilibrium calculation in thermal conversion of biomass

- Now widely used in literrature to study the behavior of inorganic matter
- For biomass volatilisation
 - Need solution database for speciation
 - Experimental evidence for the alkali speciation
 - Kinetic limitation
- For ash behaviour (liquid phase)
 - Quite good agreement with calculation with GTOX.4 for silica rich biomass
- A new tool is proposed based on simplified draws of phase diagram
 - To predict biomass-process compatibility
- Strong uncertainties for silica poor biomass
 - Need experimental data for database developpers

- **Future**
 - New calculations with GTOX.5 (phosphate compounds and solutions)
 - Need to select solutions (software <40 solutions) ٠
 - Size of liquid description LIOS (software < ??)
 - Sulphur/sulphate included but what about with FTsalt carbonates, chloride salt?
 - Waste wood but thermodynamic database with solution missing

 - Painted wood
 - Impregnated wood
- Coated particulate panel SiO₂-TiO₂-CaO + $K_2O...$ (FTOxid but no TiO₂- K_2O)
 - **BaO-TiO**₂-CaO (+**Zn**, Pb, K) no database Cu-Cr-Ca-O (K, As) no database

- Simplified tool
 - Superposition of 3 quaternaries (3 temperatures or 3 compositions)
 - Validation on real cases (laboratory or pilot)

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives 17 rue des Martyrs | 38054 Grenoble Cedex www-liten.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019