

The BiRec Project -*FactSage*[™] supported process design-

B. Friedrich

IME Process Metallurgy and Metal Recycling, RWTH Aachen University Prof. Dr.-Ing. Dr. h.c. Bernd Friedrich

DIE METALLURGEN

Proposal Overview

Innovative Technologien für Ressourceneffizienz Bereitstellung wirtschaftsstrategischer Rohstoffe

Bundesministerium für Bildung und Forschung

- BMBF call r4 "Innovative Technologies for Resource Effiency"
 - Pupose: Secure raw materials basis for future technologies
 - Materials Focus: High tech metals with major economic leverage
 - Research Focus:
 - Economic use of complex ore deposits
 - Exploration of primary resources
 - Closed loop development for used products
 - Increase of accepatance for raw materials production
 - Processing of production residues

BiRec Summary

- Purpose: Development of a sustainable route for inner
 European processing of Bismut drosses through innovative refining technologies
- Project duration: 36 months (start: Sept. 2016)
- Consortium:
- Total funding:
- Internet:

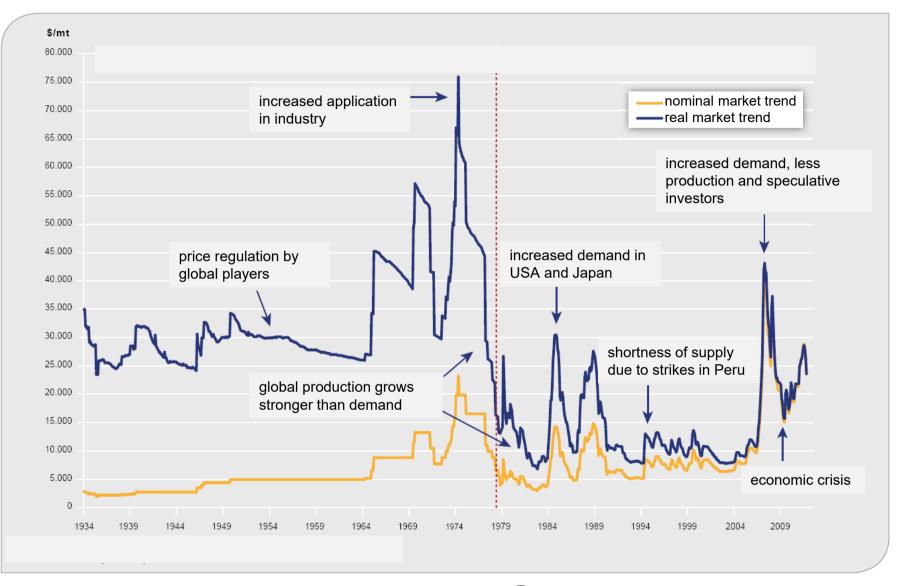
- 2 x Industry, 1 x SME , 1 x University
 - ~ 1.200.000 €
 - http://www.r4-innovation.de/



Criticality of Bismut

- Primary Bi mainly produced in China (84 %)
- Worldwide Bi-demand doubled since 1990
- Current demand growth 10-15 %/a
- Future growth progonosis ~ 25 %/a
- Driver for increasing demand: hightech applications in medicine and electrotechnology (e.g. semiconductors)

Chinese market dominance in combination with growing demand and difficult substitution leads to volatile pricing

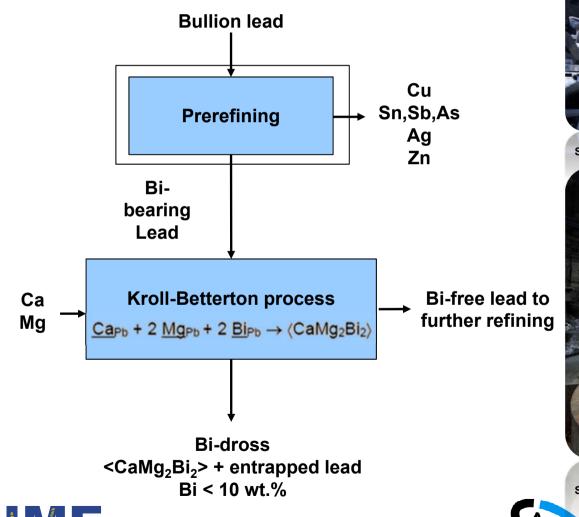


Price Fluctuations for Bismut on a Long Term View

Bi-supply through lead production

- Bi-rich ores are rare
- Main Bi-supply as byproduct of tungsten, copper, tin, zinc, gold, silver and lead production
- Lead industry originates ~ 90-95 % of byproduct bismut

Sustainable production techniques for technical bismut from lead streams are needed to ensure independent supply for high tech industries

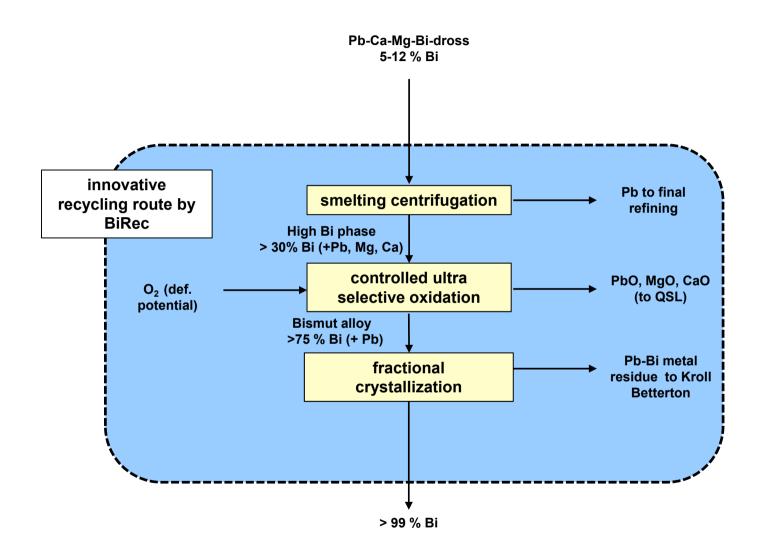


Origin of Bi-rich drosses

Lead refining process



AACHEN


KNOW-HOW CENTRE RESOURCE TECHNOLOGY

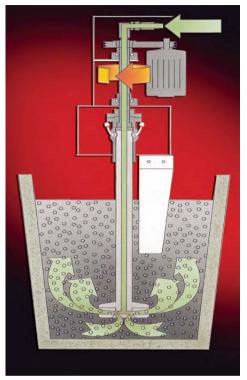
State of the art processing of Bi-drosses

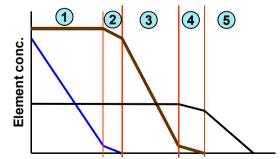
Innovative BiRec Processing Concept

Workpackages supported by FactSage™

Fre 01.01.16	Vorgänge m	it Datumsangaben der Zeita	chse hinzufügen			Ende Mon 3
Vorgangsname	→ Dktober Januar April	Juli Oktober A M E A M E	Januar April Ju A M E A M			
4 1 Analyse und Bewertung der Edukte und Produkte	Γ					1
Berzelius						0%
Aurubis						0%
* 2 Thermochemische Modellierung und	I					
Prozesssimulation						
Berzelius	VP 2 is d	adicato	d to CT			
IME	VF Z 15 U	cuivale				0%
Aurubis						
GTT						0%
Meilenstein 1			\$1.03			
3 Anreicherung Bi-haltiger Schäume im Labormaßstab			05	6		
Meilenstein 3					31.03	
4 Endraffination des Rohbismuts	←				0	%
5 Anreicherung der Bi-haltigen Schäume im Technikumsmaßstab				0%		
				• 01.10		
Meilenstein 2						
Meilenstein 2 * 6 Implementierung der entwickelten Verfahrenstechnik im Rahmen einer Pilotanlage	k					•
4 6 Implementierung der entwickelten Verfahrenstechnil	k					0%
 6 Implementierung der entwickelten Verfahrenstechnil im Rahmen einer Pilotanlage 	k				0%	0%
 6 Implementierung der entwickelten Verfahrenstechnil im Rahmen einer Pilotanlage Berzelius 					0%	0%
 6 Implementierung der entwickelten Verfahrenstechnil im Rahmen einer Pilotanlage Berzelius IME 					0%	
 6 Implementierung der entwickelten Verfahrenstechnil im Rahmen einer Pilotanlage Berzelius IME Aurubis 					0%	
 6 Implementierung der entwickelten Verfahrenstechnik im Rahmen einer Pilotanlage Berzelius IME Aurubis Verfahrensbewertung 					0%	0%
 6 Implementierung der entwickelten Verfahrenstechnik im Rahmen einer Pilotanlage Berzelius IME Aurubis Verfahrensbewertung Berzelius 					0%	0%

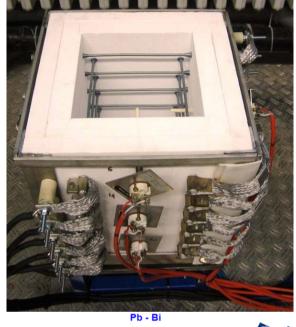
Modelling of two process steps in other WPs is carried out

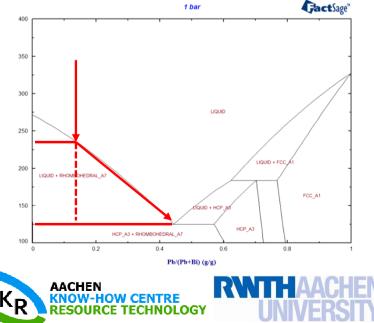




Oxidation of Bi-drosses

- Goal: further Bi-enrichment > 75 wt.% of centrifuged drosses prior to fractional cristallization
- Principle: Selective oxidation of Mg, Ca, and Pb
- Involved FactSage[™] tools: Equilib, Predom, Reaction
- Preliminary work is required to establish a suitable database in FactSage[™] for the Pb-Bi-Ca-Mg-O system
- Outcome: Optimal temperature, Oxygen content, achievable enrichment

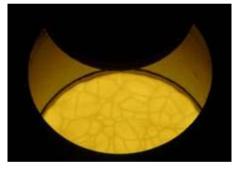




Fractional Cristallization

- Goal: Fractional cristallization of raw Bi up to a purity > 99 wt.%
- Principle: top to bottom controlled cooling
- Involved FactSage[™] tools: Equilib (Scheill Cooling)
- Preliminary work is required to establish a suitable database in FactSage™ for the Pb-Bi-Ca-Mg-O system
- Outcome: Achievable degree of purity depending on feed material, behaviour of impurities

- GTT as partner in the BiRec joint r4 project to adress criticality of Bismut supply in Germany
- Design of new sustainable Bismut recovery and refining processes from lead residues will involve two steps which can be simulated with FactSage[™]
 - Selective Oxidation of Bi-Ca-Mg-Pb melt
 - Fractional cristalization of Pb-Bi alloy
- Database development is needed in advance



GTT User-Meeting 2016; June 29th

Thank you for your attention!

For further information please contact:

IME Process Metallurgy and Metal Recycling RWTH Aachen University, 52056 Aachen, Germany bfriedrich@ime-aachen.de www.ime-aachen.de

IME Process Metallurgy and Metal Recycling, RWTH Aachen Prof. Dr.-Ing. Dr. h.c. Bernd Friedrich