

GTT Annual Users' Meeting 2016, June 29 - July 1

Database development for the HotVeGas project

Elena Yazhenskikh¹, Tatjana Jantzen², Klaus Hack², Michael Müller¹

¹ Forschungszentrum Jülich, IEK-2 (Microstructure and properties of materials), Germany
 ² GTT-Technologies, Herzogenrath, Germany

Contents

HOTVEGAS

Introduction
Including CO₂ into the database:

Oxide systems with CO₂
Salt system Na, K || SO₄, CO₃
Mixed salt systems

Re-assessment of sulphide system Ca-Cr-Fe-Mg-Mn-S

Ternary systems Me₁-Me₂-S
Quasi-ternary systems Me₁S-Me₂S-Me₃S
Thiospinel in system FeCr₂S₄-MnCr₂S₄

Motivation and aim of work

HOTVEGAS Hochtemperaturvergasung und Gasreinigung

GTT-TECHNOLOGIES

Aims:

development of a new data base, which is applicable for the slag relevant system containing oxides of Si, Al, Na, K, Ca, Mg, Fe, P, S, Cr etc. and suitable for the calculations and/or predictions of the phase equilibria and other thermodynamic properties by variation of T and composition

State of the art:

- ✓ 2-, 3- and multicomponent systems have been thermodynamically assessed using all available experimental data
- ✓ phase diagrams and other thermodynamic properties can be calculated with the obtained selfconsistent datasets

Contents	Slag atlas (11.0) Nov 2015
Binary systems	119
Ternary systems	98
Quaternaries	6
Slag components	149
Solid solution phases	85
Stoichiometric compounds	316

Oxide systems with CO₂ Including CO₂

JÜLICH FORSCHUNGSZENTRUM

Problem:

 Contradictory data on the mixtures silicate-carbonate-gas After addition of the new associate species all systems (binary, ternary etc.) are assessed taking into account the available experimental information.

Oxide systems: (Me)_m(O)_n-CO₂

Carbonate systems: $(Me1)_m(CO_3)_n-(Me2)_l(CO_3)_p$

Mixed systems: e.g.(Me1)_m(CO₃)_n-(Me2)_I(Si_xO_y)_p

Oxide systems with CO₂

Binary system Na₂O-CO₂

R. Bouaziz and G. Papin, *C. R. Seances Acad. Sci., Ser. C*, **266** [21] 1530-1533 (1968).

Slag: new species Na₂CO₃

Preliminary calculation in the system Na₂O-CO₂

Quasi-binary system Na₂CO₃-Na₄SiO₄

B. F. Dmitruk, 1984

Slag: interaction parameter between Na_2CO_3 and Na_4SiO_4 New compounds: 1:2 $Na_4SiO_4*2Na_2CO_3$ 2:1 $2Na_4SiO_4*Na_2CO_3$

Preliminary calculation of the system Na_4SiO_4 - Na_2CO_3

Salt systems

Addition of alkali carbonates

19 December 2016

Salt systems

System Na₂CO₃-Na₂SO₄

Salt systems

Salt systems

Diagonals in system Na¹⁺, K¹⁺ CO₃²⁻, SO₄²⁻

Salt systems

Sections in system Na¹⁺, K¹⁺ CO₃²⁻, SO₄²⁻

Salt systems

Reciprocal system Na¹⁺, K¹⁺ CO₃²⁻, SO₄²⁻

19 December 2016

Salt systems

System Na¹⁺, K¹⁺ CO₃²⁻, SO₄²⁻, S²⁻

Salt systems

System Na¹⁺, K¹⁺ CO₃²⁻, SO₄²⁻, S²⁻

Development of the sulphide database

Isothermal section in Cr-Fe-S

Properties	H _e , kJ/Mol	S _f , J/mol K	T _m , ℃
Experimental	-457.31 [Kessler76] -566.8 [Petaev82] -488.4[Osadchij14]	207.1 [Petaev82] 187.53 [Osadchij14]	1440 [Indosova82] 1350 [ElGoresy]
Calculated	-570.279(FTMisc) -586.040[Waldner14] -542.835*	173.587(FTMisc) 198.082 [Waldner14] 167.883*	1440 (FTMisc) 1071 [Waldner14] 1437*

Fig. 7. Phase relations in the Cr-Fe-S system at 600°C. All assemblages are in equilibrium with vapor.

10,+10 D.fel. 5

A. El Goresy, G. Kullerud: in Proc. Symp. Meteorite Res., P.M.D. Millman, ed., Reidel, Dordrecht, (1969), pp. 638-656.

Introduction FeCr₂S₄

Isothermal section in Cr-Fe-S

Fig. 6. Phase relations in the Cr-Fe-S system at 700°C. All assemblages are in equilibrium with vapor.

A. El Goresy, G. Kullerud: in Proc. Symp. Meteorite Res., P.M.D. Millman, ed., Reidel, Dordrecht, (1969), pp. 638-656.

Isothermal section in Cr-Fe-S

Isopleth section at ~50 mol % S in Cr-Fe-S

Solubility of Fe in Cr₃S₄

Phase diagram of the system Cr_3S_4 -FeCr_2S4. Cr_3S₄ type I, spinel type, II, phase transition temperature given in ref. (1), O, (4), \Box , and (5), Δ .

FeCr₂S₄/(FeCr₂S₄+Cr₃S₄) (mol/mol)

H.D. Lutz, U. Koch, H. Siwert, Mat. Res. Bull., 18 (1983), pp.1383-1389.

Isothermal section at 800°C in Cr-Mn-S

Fig. 8–Schematic representation of portion of Cr-Mn-S phase diagram at 800°C. Postulated tie lines for local equilibrium compositions of phases in contact during reaction are indicated, together with a continuity diagram. Dashed arrows show possible presence of $MnCr_2S_4$ in products.

Shatynski, S.R.; Hirth, J.P.; Rapp, R.A., Metall. Trans. A, 10A (5), 591-598 (1979) (16).

Fe-Mn-S

Isothermal section in Fe-Mn-S

BCC A2 + Oldhamite

0.5

mole fraction

0.4

800°C (1073 K

88Rag1

FCC A1 + Oldhamite

0.6 PYRRHOTITE

mole fraction

FCC_A1 + Liquid + Oldhamite

0.9

Liquid

0.3

Liquid + Liquid#2

0.1

0.2

Liquid + Oldhamite

0.2

0.1

PYRRHOTITE + Liquid + Oldhamite

0.3

GactSage[™]

19. Dezember 2016

0.9

Fe

0.7

0.8

0.6

GTT Annual Workshop, 2016

S

Fe

Fe-Mn-S

S

Isothermal section in Fe-Mn-S

V. Raghavan, Phase Diagrams of Ternary Iron Alloys, The Indian Institute of Metals, Calcutta, India [2], (1988), pp. 154-173.

ÜLICH

FORSCHUNGSZENTRUM

Isothermal section in Fe-Mn-S

M. Hillert, L.-I. Staffansson, Metallurg. Transact., Section B: Process Metallurgy, 7B, (1976), pp. 203-211.

V. Raghavan, Phase Diagrams of Ternary Iron Alloys, The Indian Institute of Metals, Calcutta, India [2], (1988), pp. 154-173.

Solubility of Mn and S in Fe-rich liquid at 1600°C

Isopleth section Fe/Mn=97/3 in Fe-Mn-S

GTT Annual Workshop, 2016

System Fe-Mn-S

1100°C

Relationship between S potential and Mn fraction

System CaS-FeS-MnS

B.J. Skinner, F.D. Luck, Amer. Mineral., Vol.56 (1971), pp. 1269-1296.

Isothermal section at 700°C in CaS-FeS-MnS

GactSage[™]

T°C

2500 2250 2000

1750

1500

1250

MnS

System FeS-MgS-MnS

Isothermal sections in FeS-MgS-MnS

Tiospinel in Cr-Fe-Mn-S

Sulfur spinels or thiospinels have a general formula AB_2S_4 where A is a divalent metal and B is a trivalent metal. Thiospinel in Sulfide database – solid solution phase with end-members $FeCr_2S_4$, $CuCr_2S_4$ and $MnCr_2S_4$

Conclusions

- ✓ Carbonate species have been included into the slag of the system Na₂O-K₂O-CO₂-S-SO₃. The liquid phase in all subsystems was evaluated using non-ideal associate species model (two cations per species).
- Alkali carbonates have been added to hexagonal phase with the corresponding parameters describing both solubilities in the cation and in the anion sublattices
- ✓ All systems were assessed using experimental phase diagram information.
- The mixed salt systems containing alkali carbonates, sulphides and sulphides have been calculated using the corresponding data
- The liquid phase in all subsystems Ca-Cr-Fe-Mn-Mg-S was evaluated using associate species model
- ✓ All systems (6 ternaries and 4 quasi-ternaries) were assessed using experimental phase diagram information and thermodynamic properties as far as available
- ✓ The solubility ranges of solid solution phases containing S (such as Pyrrhotite, Oldhamite, Thiospinel, Cr₃S₄) were described using the sublattice model

Outlook

- ✓ Thermodynamic assessment of further systems with CO₂
- Considering the mixed silicate-carbonate systems

On behalf of all co-authors:

Thank you for your attention!Vielen Dank für Ihre Aufmerksamkeit!Благодарю за внимание!

HOTVEGAS

GTT - TECHNOLOGIES

