Research for Sustainable Technologies

A. Donchev, M. Galetz

The fluorine effect for the high temperature oxidation protection of Ti-based alloys – A thermodynamic approach

GTT Workshop, July 1st. 2016

Materials Chemical Engineering Biotechnology

Motivation

Use of Ti-based light weight materials to increase the efficiency of e.g. jet engines.

Oxidation of Ti-Alloys and Titanium Aluminides

Scheme of the oxide layers and the oxygen diffusion zone on titanium and titanium aluminides (J.L. Smialek et al.; Mat. Res. Soc. Symp. Proc. 364(1995)1935)

 \Rightarrow Embrittlement by oxygen inward diffusion, mixed scale non-protective!

Destruction of TiAl-Components

Before HT-exposure

After 100h at 1050°C in air

After 1200h at 1050°C in air

Insufficient high temperature stability

 \Rightarrow Improvement of the oxidation resistance necessary!

The Halogen Effect

SEM-image of a TiAl-sample implanted on the left side with Cl

Mechanism

Reactions

Reactions of TiAl

$$\begin{aligned} \mathsf{AI}_{(\mathsf{TiAI})} &+ 0.5 \; \mathsf{F}_2 \to \mathsf{AIF}_{(g)} \; ; \; \Delta \mathsf{G}^\circ_{900^\circ \mathsf{C}} = - \; 3.57 \times 10^5 \; (\mathsf{J/mol}) \\ \mathsf{AI}_{(\mathsf{TiAI})} &+ \; 0.5 \; \mathsf{CI}_2 \to \mathsf{AICI}_{(g)} \; ; \; \Delta \mathsf{G}^\circ_{900^\circ \mathsf{C}} = - \; 1.48 \times 10^5 \; (\mathsf{J/mol}) \\ \mathsf{AI}_{(\mathsf{TiAI})} &+ \; 0.5 \; \mathsf{Br}_2 \to \mathsf{AIBr}_{(g)} \; ; \; \Delta \mathsf{G}^\circ_{900^\circ \mathsf{C}} = - \; 9.85 \times 10^4 \; (\mathsf{J/mol}) \\ \mathsf{AI}_{(\mathsf{TiAI})} &+ \; 0.5 \; \mathsf{I}_2 \to \mathsf{AII}_{(g)} \; ; \; \Delta \mathsf{G}^\circ_{900^\circ \mathsf{C}} = - \; 6.19 \times 10^4 \; (\mathsf{J/mol}) \end{aligned}$$

$$\begin{split} & {\rm Ti}_{({\rm TiAl})} + 0.5 \ {\rm F}_2 \to {\rm TiF}_{({\rm g})} \ ; \ \Delta {\rm G}^\circ_{900^\circ {\rm C}} = - \ 1.92 \times 10^5 \ ({\rm J/mol}) \\ & {\rm Ti}_{({\rm TiAl})} + 0.5 \ {\rm Cl}_2 \to {\rm TiCl}_{({\rm g})} \ ; \ \Delta {\rm G}^\circ_{900^\circ {\rm C}} = + \ 2.77 \times 10^4 \ ({\rm J/mol}) \\ & {\rm Ti}_{({\rm TiAl})} + {\rm Cl}_2 \to {\rm TiCl}_{2({\rm g})} \ ; \ \Delta {\rm G}^\circ_{900^\circ {\rm C}} = - \ 2.68 \times 10^5 \ ({\rm J/mol}) \\ & {\rm Ti}_{({\rm TiAl})} + 0.5 \ {\rm Br}_2 \to {\rm TiBr}_{({\rm g})} \ ; \ \Delta {\rm G}^\circ_{900^\circ {\rm C}} = + \ 5.09 \times 10^4 \ ({\rm J/mol}) \\ & {\rm Ti}_{({\rm TiAl})} + {\rm Br}_2 \to {\rm TiBr}_{2({\rm g})} \ ; \ \Delta {\rm G}^\circ_{900^\circ {\rm C}} = -1.81 \times 10^5 \ ({\rm J/mol}) \\ & {\rm Ti}_{({\rm TiAl})} + {\rm Br}_2 \to {\rm TiBr}_{({\rm g})} \ ; \ \Delta {\rm G}^\circ_{900^\circ {\rm C}} = + \ 1.10 \times 10^5 \ ({\rm J/mol}) \\ & {\rm Ti}_{({\rm TiAl})} + {\rm I}_2 \to {\rm Til}_{2({\rm g})} \ ; \ \Delta {\rm G}^\circ_{900^\circ {\rm C}} = -1.23 \times 10^5 \ ({\rm J/mol}) \\ & {\rm Ti}_{({\rm TiAl})} + {\rm I}_2 \to {\rm Til}_{2({\rm g})} \ ; \ \Delta {\rm G}^\circ_{900^\circ {\rm C}} = -1.23 \times 10^5 \ ({\rm J/mol}) \end{split}$$

Reactions of MeX (X = F, Cl, Br, I)

$$\begin{aligned} 4 \text{ AlF}_{(g)} + 3 \text{ O}_2 &\rightarrow 2 \text{ Al}_2 \text{ O}_{3(s)} + 2 \text{ F}_2 \text{ ; } \Delta \text{G}^\circ_{900^\circ\text{C}} = -1.19 \times 10^6 \text{ (J/mol)} \\ 4 \text{ AlCl}_{(g)} + 3 \text{ O}_2 &\rightarrow 2 \text{ Al}_2 \text{ O}_{3(s)} + 2 \text{ Cl}_2 \text{ ; } \Delta \text{G}^\circ_{900^\circ\text{C}} = -2.03 \times 10^6 \text{ (J/mol)} \\ 4 \text{ AlBr}_{(g)} + 3 \text{ O}_2 &\rightarrow 2 \text{ Al}_2 \text{ O}_{3(s)} + 2 \text{ Br}_2 \text{ ; } \Delta \text{G}^\circ_{900^\circ\text{C}} = -2.22 \times 10^6 \text{ (J/mol)} \\ 4 \text{ AlB}_{(g)} + 3 \text{ O}_2 &\rightarrow 2 \text{ Al}_2 \text{ O}_{3(s)} + 2 \text{ Br}_2 \text{ ; } \Delta \text{G}^\circ_{900^\circ\text{C}} = -2.53 \times 10^6 \text{ (J/mol)} \end{aligned}$$

$$\begin{aligned} 2 \text{ TiF}_{(g)} + 2 \text{ } O_2 &\rightarrow 2 \text{ TiO}_{2(s)} + \text{F}_2 \text{ ; } \Delta \text{G}^\circ_{900^\circ\text{C}} = -1,09 \times 10^6 \text{ (J/mol)} \\ \text{TiF}_{2(g)} + O_2 &\rightarrow \text{TiO}_{2(s)} + \text{F}_2 \text{ ; } \Delta \text{G}^\circ_{900^\circ\text{C}} = -7,93 \times 10^4 \text{ (J/mol)} \\ 2 \text{ TiCl} + 2 \text{ } O_2 &\rightarrow \text{Cl}_2 + 2 \text{ TiO}_{2(s)} \text{; } \Delta \text{G}^\circ_{900^\circ\text{C}} = -1.53 \times 10^6 \text{ (J/mol)} \\ \text{TiCl}_{2(g)} + O_2 &\rightarrow \text{TiO}_{2(s)} + \text{Cl}_2 \text{ ; } \Delta \text{G}^\circ_{900^\circ\text{C}} = -4,69 \times 10^5 \text{ (J/mol)} \\ 2 \text{ TiBr}_{(g)} + 2 \text{ } O_2 &\rightarrow 2 \text{ TiO}_{2(s)} + \text{Br}_2 \text{ ; } \Delta \text{G}^\circ_{900^\circ\text{C}} = -1,57 \times 10^6 \text{ (J/mol)} \\ \text{TiBr}_{2(g)} + O_2 &\rightarrow \text{TiO}_{2(s)} + \text{Br}_2 \text{ ; } \Delta \text{G}^\circ_{900^\circ\text{C}} = -5,56 \times 10^5 \text{ (J/mol)} \\ 2 \text{ TiI}_{(g)} + 2 \text{ } O_2 &\rightarrow 2 \text{ TiO}_{2(s)} + \text{I}_2 \text{ ; } \Delta \text{G}^\circ_{900^\circ\text{C}} = -1,69 \times 10^6 \text{ (J/mol)} \\ \text{TiI}_{2(g)} + O_2 &\rightarrow \text{TiO}_{2(s)} + \text{I}_2 \text{ ; } \Delta \text{G}^\circ_{900^\circ\text{C}} = -6,13 \times 10^5 \text{ (J/mol)} \end{aligned}$$

Al-Flux

Necessary amount of Al calculated from the parabolic rate constant

(1)
$$J_{Al}^{ox} = \frac{1}{48} \left(\frac{k_p}{t} \right)^{\frac{1}{2}} \frac{\text{mol Al}}{\text{cm}^2 \cdot \text{sec}}$$

 $K_p = 5 \times 10^{-13} \text{ g}^2/\text{cm}^4$ ·sec at 900°C so after 60 sec of oxidation

$$J_{Al}^{ox}$$
 = 2×10⁻⁹ mol/cm²· sec

Deduced from the kinetic gas theory for AIX (X = hal.) the flux is as follows

(2)
$$J_{AIX} = J_{AI} = 44.3 \frac{P_{AIX}}{(M_{AIX}T)^{\frac{1}{2}}} \frac{\text{mol Al}}{\text{cm}^2 \cdot \text{sec}}$$

with p_{AIX} = partial pressure and M_{AIX} = molar weight.
In the case of AICI (2) turns into $J_{AI} = 0.164P_{AICI} \frac{\text{mol Al}}{\text{cm}^2 \cdot \text{sec}}$

The fluxes must be equal $J_{A1}^{ox} = J_{A1}$ (2×10⁻⁹ = 0.164P_{AICI})

 $\Rightarrow P_{AlCl}^{min} = 1 \times 10^{-8} atm$

T [°C]	k _p (Al ₂ O ₃) [g ² /cm ² s]	P^{min}_{AlCl} [atm]	P ^{min} Cl ₂ [atm]
700	1×10 ⁻¹⁵	5×10 ⁻¹⁰	2.5×10 ⁻¹⁰
800	5×10 ⁻¹⁴	4×10 ⁻⁹	2×10 ⁻⁹
900	5×10 ⁻¹³	1×10 ⁻⁸	5×10 ⁻⁷
1000	1×10 ⁻¹²	2×10 ⁻⁸	1×10 ⁻⁸
1100	8×10 ⁻¹²	5×10 ⁻⁸	2.5×10 ⁻⁸

Parabolic rate constants and necessary minimum amounts /partial pressures of AICI and Cl₂, respectively.

FactSage Results I (F)

Excerpt of the tabular output from the Equilib menu: T = 900°C

Compound	Pressure / bar	Compound	Pressure / bar	Compound	Pressure / bar
AIF	3.1416 E-08	AIF	3.1416 E-07	AIF	3.1416 E-06
Al ₂ O	4.0640 E-09	Al ₂ O	4.0640 E-09	Al ₂ O	4.0640 E-09
Al	6.5253 E-10	Al	6.5253 E-10	Al	6.5253 E-10
AIF ₂	5.6573 E-17	AIF ₃	1.9990 E-14	AIF ₃	1.9990 E-11
Ti	8.8189 E-17	AIF ₂	1.4258 E-14	AIF ₂	1.4258 E-12
Al ₂	5.6573 E-17	AIFO	5.1448 E-16	TiF ₃	4.7494 E-14
AIFO	5.1448 E-17	TiF	5.0519 E-16	TiF ₂	2.4699 E-14
TiF	5.0519 E-17	TIF ₂	2.4699 E-16	AIFO	5.1448 E-15
AIF ₃	1.9990 E-17	Ti	8.8189 E-17	TiF	5.0519E-15
TiF ₂	2.4699 E-18	Al_2	5.6573 E-17	Ti	8.8189 E-17
TiO	2.7096 E-19	TiF ₃	4.7494 E-17	Al ₂	5.6573 E-17
N ₂	1.0000 E-15	N ₂	1.0000 E-15	N ₂	1.0000 E-15
0 ₂	1.0000 E-37	02	1.0000 E-37	02	1.0000 E-37
F ₂	1.0000 E-44	F ₂	1.0000 E-42	F ₂	1.0000 E-40

FactSage Results II (CI)

Excerpt of the tabular output from the Equilib menu: T = 900°C

Compound	Pressure / bar	Compound	Pressure / bar	Compound	Pressure / bar
AICI	1.5092 E-08	AICI	1.5092 E-07	AICI	1.5092 E-06
Al ₂ O	4.0640 E-09	Al ₂ O	4.0640 E-09	Al ₂ O	4.0640 E-09
Al	6.5253 E-10	Al	6.5253 E-10	Al	6.5253 E-10
AICI ₂	1.2392 E-15	AICI ₂	1.2392 E-13	AICI ₂	1.2392 E-11
Cl	3,5274 E-16	AICl ₃	9.4609 E-15	AICI ₃	9.4609 E-12
Ti	8.8189 E-17	Cl	3,5274 E-15	TiCl ₂	1.1376 E-13
Al ₂	5.6573 E-17	TiCl ₂	1.1376 E-15	Cl	3,5274 E-14
TiCl ₂	1.1376 E-17	Ti	8.8189 E-17	TiCl ₃	7.8854 E-15
AICI ₃	9.4609 E-18	TiCl	8.1550 E-17	Ti	8.8189 E-17
TiCl	8.1550 E-18	Al ₂	5.6573 E-17	Al ₂	5.6573 E-17
TiO	2.4699 E-18	TiCl ₃	7.8854 E-18	AICIO	7.4107 E-18
N ₂	1.0000 E-15	N ₂	1.0000 E-15	N ₂	1.0000 E-15
02	1.0000 E-37	02	1.0000 E-37	02	1.0000 E-37
Cl ₂	1.0000 E-26	Cl ₂	1.0000 E-24	Cl ₂	1.0000 E-22

Fluorine Pressures

Conditions at the metal/oxide interface (low partial pressures of oxygen and nitrogen)

Limits of the Cl-, Br- and I-Effect

Fluorine Applications

Liquid Fluorine Applications

SprayingPaintingof F-containing compounds:F-polymer spray or suspension, F-paste

Dipping

in F-containing acids, e.g. HF_(aq.)

Activation process at elevated temperatures

Long Term Stability of the Fluorine effect

Proof of Fluorine

TiAl + F-PI³/25h-cycle test/24h hot/1h cold/900°C/8760h/air

Results for Ti-Alloys

TiAl₃-layer after pack process

After fluorination and oxidation at 600°C for 120 h in air

Powder Pack Process of Aluminum

Precursors: e.g. Al, Ti_xAl_y, Cr_yAl_x Temperature: 500 - 600°C Activators: e.g. NH₄Cl, H(NH₄)F₂, AlF₃ Gas: Ar Filler: Al₂O₃ Time: 1-5 hours Ti AIX_(g) $AI_{(s)} + NH_4X_{(s)}$ $AIX_{(g)} + NH_{3(g)}$ Solid state diffusion Gas phase diffusion $X_{(g)} + AI_{(s)}$ Calculation of $AIX_{(g)}$ by FactSage in advance.

Conclusions

- Thermodynamic calculations have revealed the halogen effect process windows
- The halogen effect works at temperatures above 700°C by changing the oxidation mechanism from mixed oxide scale formation to protective alumina formation.
 Fluorine is the best doping halogen
- The F-effect works for all technical TiAl alloys with an Al-content \geq 40at.%
- The F-effect works also for technical Ti-alloys after Al-enrichment

