Sulfide Database: Evaluation of thermodynamic data and phase equilibria

GTT-Technologies, Herzogenrath

GTT-Workshop, 1-3. Juli 2015, Herzogenrath K. Hack, T. Jantzen, E. Yazhenskikh, M. Müller

Contents of presentation

- GTT-Technologies
 - Introduction
 - Binaries S-containing systems: Ca-S, Cr-S, Cu-S, Fe-S, Mg-S, Mn-S
 - Quasi-binary systems with Pyrrhotite: CaS-FeS, FeS-MgS and FeS-MnS
 - **Quasi-binary systems with Digenite**: Cu₂S-MgS and Cu₂S-MnS
 - Quasi-binary systems with Oldhamite: CaS-MgS, CaS-MnS and MgS-MnS
 - **Ternary systems:** Cr-Fe-S, Cr-Mn-S and Cu-Fe-S
 - Conclusions

Sulphur in oxide glasses

Introduction

The associate species containing S were added in order to describe the liquid phase containing metal sulphides.

System	Associate species
Ca-S	CaS
Cr– S	CrS
Cu-S	Cu ₂ S
Fe– S	FeS
Mg-S	MgS
Mn-S	MnS
Cu-Fe-S	CuFeS ₂ /2

Modelling of binary S-containing phases

System	Phase	Description	Source		
Ca-S	Liquid	(Ca, CaS, S)	proposed by GTT		
Cr-S	Liquid Cr _{1.01} S, Cr ₃ S ₄ Cr ₂ S ₃ , Cr ₅ S ₆ ,Cr ₇ S ₈ Pyrrhotite	(Ca, CrS, S) stoichiometric stoichiometric (Va, <u>Cr</u>)S	modelled by GTT modelled by GTT modelled by GTT CrS(SGPS)		
Cu-S	Liquid Cu ₂ S-I Cu ₂ S-II Digenite CuS	(Ca, Cu_2S , S) S (Va, <u>Cu</u>) S (Va, <u>Cu</u>) (S ²⁻)(Va, <u>Cu¹⁺</u>)(Va, <u>Cu¹⁺</u>) stoichiometric	modelled by GTT modelled by GTT modelled by GTT modelled by GTT SGPS		
Fe-S	Liquid FeS (s1, s2) FeS ₂ Pyrrhotite	(Fe, FeS, S) stoichiometric stoichiometric (Va, <u>Fe</u>)S	[Miettinen,Hallstedt98] < 50%S GTT > 50%S SGPS (H_f, C_p) SGPS [92Sun2]		
Mg-S	Liquid	(Mg, MgS, S)	proposed by GTT		
Mn-S	Liquid	(Mn, MnS, S)	[Miettinen,Hallstedt98] < 50%S GTT > 50% S		
	MnS, MnS ₂	stoichiometric	[Miettinen,Hallstedt98]		

Modelling of ternary S-containing phases

System	Phase	Description	Used data
CaS - FeS	Oldhamite	(<u>Ca</u> , Fe)(S)	modelled by GTT
CaS - MgS	Oldhamite	(<u>Ca</u> , <u>Mg</u>)(S)	modelled by GTT
CaS - MnS	Oldhamite	(<u>Ca</u> , <u>Mn</u>)(S)	modelled by GTT
Cr-Fe-S	Cr ₂ FeS ₄	stoichiometric	modelled by GTT
	Pyrrhotite	(Va, <u>Cr</u> , <u>Fe</u>)(S)	modelled by GTT
Cr-Mn-S	MnCr ₂ S ₄	stoichiometric	modelled by GTT
	MnS	(Cr, <u>Mn</u>)S	modelled by GTT
Cu-Fe-S	Digenite	(S ²⁻)(Va, <u>Cu¹⁺</u>)(Va, <u>Cu¹⁺</u> ,Fe ²⁺)	modelled by GTT
	Pyrrhotite	(Va, <u>Fe</u> , Cu)(S)	modelled by GTT
	CuFeS ₂ -HT	(<u>Cu</u> , Fe) FeS ₂	modelled by GTT
	CuFeS ₂ (s)	stoichiometric	SGPS
Cu ₂ S-MgS	Digenite	(S ²⁻)(Va, <u>Cu¹⁺</u>)(Va, <u>Cu¹⁺</u> ,Mg ²⁺)	modelled by GTT
Cu ₂ S-MnS	Digenite	(S ²⁻)(Va, <u>Cu¹⁺</u>)(Va, <u>Cu¹⁺</u> ,Mn ²⁺)	modelled by GTT
FeS-MgS	Pyrrhotite	(Va, <u>Fe</u> , Mg)(S)	modelled by GTT
	Oldhamite	(Fe, <u>Mg</u>)(S)	modelled by GTT
FeS-MnS	Oldhamite	(Fe, <u>Mn</u>)(S)	modelled by GTT
	Pyrrhotite	(Va, <u>Fe</u> , Mn)(S)	modelled by GTT

Modelling of S-containing phases

Phase	Description
Pyrrhotite	(<u>Cr. Fe</u> , Cu, Mg, Mn, Va) S
Cu ₂ S-I	(<u>Cu</u> , Va) ₂ S
Cu ₂ S-II	(<u>Cu</u> ,Va) ₂ S
Digenite	(<u>Cu</u> ¹⁺ ,Va) (<u>Cu</u> ¹⁺ ,Fe ²⁺ ,Mg ²⁺ ,Mn ²⁺ , Va) (S ²⁻)
Oldhamite	(<u>Ca, Mg. Mn.</u> Fe)(S)
CuFeS ₂ -HT	(<u>Cu</u> , Fe) Fe(S) ₂
MnS	(Cr, <u>Mn</u>) S

Binary Cr-S phase diagram

Binary Fe-S phase diagram

Binary Cu-S phase diagram

Binary Mn-S phase diagram

H. Okamoto, J. Phas. Equil. Diff., Vol. 32, 1 (2011), p.78.

Binary Ca-S and Mg-S phase diagrams

CaS-FeS phase diagram

FeS-MnS phase diagram

FeS-MgS phase diagram

GTT-Technologies

O. V. Andreev, A. V. Solov'eva, and T. M. Burkhanova, Zh. Neorg. Khim., 51 [11] 1938-1941 (2006); Russ. J. Inorg. Chem. (Engl. Transl.), 51 [11] 1826-1828 (2006).

Cu₂S-MgS phase diagram

Cu₂S-MnS phase diagram

Quasi-binaries with Oldhamite

 $\overline{3}$

GTT-Technologies

Sulfide	Pearson Symbol	Space group	Struktur- bericht	Prototype
CaS	cF8	Fm ₃ m	B1	NaCl
MgS	cF8	Fm ³ m	B1	NaCl
MnS	cF8	Fm ³ m	B1	NaCl

MnS/(MgS+MnS) (mol/mol)

Isothermal sections at 700° C and 950° C in Cr-Fe-S

Isothermal sections at 1090°C and 1300°C in Cr-Fe-S

Isopleth section at ~50 mol % S in Cr-Fe-S

Isopleth section FeCr₂S₄-Cr₂S₃ in Cr-Fe-S

Isothermal section at 800° C in Cr-Mn-S

GTT-Technologies

Fig. 8–Schematic representation of portion of Cr-Mn-S phase diagram at 800°C. Postulated tie lines for local equilibrium compositions of phases in contact during reaction are indicated, together with a continuity diagram. Dashed arrows show possible presence of $MnCr_2S_4$ in products.

Shatynski, S.R.; Hirth, J.P.; Rapp, R.A., Metall. Trans. A, 10A (5), 591-598 (1979) (16).

Isopleth section CrS-MnS

GTT-Technologies

- .

Isothermal section at 600° C in Cu-Fe-S

Isothermal section at 800° C in Cu-Fe-S

Isothermal section at 1000° C in Cu-Fe-S

Isothermal section at 1200°C in Cu-Fe-S

GTT-Technologies

D.G. Mendoza, M. Hino and K.Itagaki, Mater. Transact., Vol. 42, No. 11 [2001], pp.2427-2433.

Isopleth section CuFeS₂-FeS_{1.08} in Cu-Fe-S

Conclusions

- The liquid phase in all subsystems was evaluated using associate species model,
- All systems were assessed using experimental phase diagram information and thermodynamic properties as far as available.
- The 8 solid solution phases and 19 stoichiometric phases containing S were incorporated.

Sailing close to the wind ...

