C Allord

The Steel and Iron Foundry

Production of thick walled castings in duplex stainless steels using equilibrium phase calculations

Susana Martinez de la Puente, Alwin Mertens, Mik Doms Allard-Europe nv , Veedijk 51, 2300 Turnhout (Belgium)

Casting is our technology

Contents of the presentation

Short introduction on Allard-Europe

Physical metallurgy of duplex

Problems encountered during production of massive parts

Why and how to use equilibrium phase calculations

Allard-Europe

- Jobbing foundry specialised in the production of unique parts and small series.
- Located in Turnhout (Belgium)
- SME: 100 employees, turnover 17 MEuro
- Maximum casting weight: 30ton, Moulding box dimensions up to 5800x5800 mm
- Materials: steel (low and high alloyed), high Cr white cast iron, since 4 years production of heavy section duplex stainless steel
 - In-house machining.

Physical metallurgy of DSS

Solidification sequence: L - F - F+A Fast quench preserves the F+A structure.

Massive castings: cooling rate limited by thickness and by moulding sand Casting is our technology

Unwanted precipitates in DSS

Problem phases: σ and Cr₂N

σ

- Hard and brittle
- Tetragonal
- Big lattice mismatch
- =>POSSIBLE FRACTURE DURING PROCESS
- $-Cr_2N$
- Not a problem during process

(annealed and air cooled)

Both σ and Cr_2N must be eliminated from final product => appropriate anneal and quench

Heat treat successfully: use equilibrium phase calculations

Phase fraction diagram:

- Annealing and quench temperature must lie:

- Above σ and Cr₂N precipitation temperature
- According to the F/A ratio

© 2004 Allard-Europe

Casting is our technology

Equilibrium phase calculations

Allow estimating the annealed and quenched structure of a given composition:

- Impossible to avoid nitride

Equilibrium phase calculations

Allow estimating the annealed and quenched structure of a given composition:

%F>%A

SO 9002 CI

Equilibrium phase calculations

Allow estimating the annealed and quenched structure of a given composition:

Higher as cast σ fraction

Casting is our technology

Conclusions

- Casting duplex stainless steel up to 300mm is possible
 Equilibrium phase calculations are essential:
 - to optimize the composition,
 - to choose the final annealing treatment.
- The final microstructure depends also on the precipitation kinetics during the quench.
- Besides, casting thick walled duplex requires:
 - Understanding the physical metallurgy of the material
 - Control of the casting practice due to risk of fracture
 - Adjusting the composition to the geometry and thickness of the part to be casted and to the end properties.

Casting is our technology

Photo Gallery

The Steel and Iron Foundry

Thanks for your attention