

Applications of the constrained Gibbs energy method in modelling thermal biomass conversion.

GTT-Technologies' 17th Annual Users' Meeting, Herzogenrath, Germany, July 1-3, 2015 Petteri Kangas and Pertti Koukkari VTT Technical Research Centre of Finland

In 2013: CFE for in the kraft recovery boiler modelling presented in GTT Annual Users' meeting

Figure 4. Equilbrium concentrations of S and 2 Me (2 Na + 2 K) in the fume of recovery boiler as a function of temperature. $\lambda_{furnace} = 0.7$. Volatility: $x_{Na} = 10$ %, $x_{S} = 30$ % at 1000 C. EF_K = 1.4 and EF_{CI} = 2.5. Reference figure from [1].

Business from technology

Modelling the super-equilibrium of sodium, potassium, sulphur and chlorine in the recovery boiler fume

GTT-Technologies' 15th Annual Users' Meeting, Herzogenrath, Germany, July 3-5, 2013

PETTERI KANGAS¹, PERTTI KOUKKARI¹, DANIEL LINDBERG² AND MIKKO HUPA² ¹ VTT Technical Research Centre of Finland ² Åbo Akademi University

Published in:

[1] Kangas P, Koukkari P, Lindberg D, Hupa M. Modelling black liquor combustion with the constrained Gibbs energy method. 8th International Black Liquor Colloquium, Belo Horizonte, Brazit 2013.

[2] Kangas P, Koukkari P, Lindberg D, Hupa M. Modelling black liquor combustion with the constrained Gibbs energy method (submitted). The Journal of Science and Technology for Forest Products and Processes 2013.

Methodology

Methodology – Constrained Free Energy (CFE) method

- CFE is an extension to Gibbs' free energy method where additional immaterial constraints are incorporated to chemical system
- Chemical system can be constrained by extent of reaction, electrochemical potential, surface area or volume
- The distinct benefit of this method lies in the calculation of constrained chemical reactions, enthalpic effects and state properties simultaneously and interdependently
- ChemSheet is applied as modelling tool, as it allows extending chemical system with virtual constraints

Constraint	Application area	Details
Extent of	1909	
reaction	Combustion	Benzene combustion
	Inorganic chemistry	Anatase-rutile transformation
	Inorganic chemistry	combustion of TiCl ₄
	Inorganic chemistry	Mercury-chlorine system
	Biochemistry	Reaction pathways
	Papermaking	Calcium chemistry
	Metallic alloys	Para-equilibriums in steel making
	Internal combustion	NO freezing
	Internal combustion	CO freezing
	Internal combustion	Hydrogen combustion
	Internal combustion	Methane combustion
	Internal combustion	Methanol combustion
	Internal combustion	Formaldehyde
	Internal combustion	Ethanol combustion
	Biomass combustion	Black liquor combustion
	Biomass combustion	Biomass gasification
	Biomass combustion	Char gasification
	Biomass combustion	Biomass pyrolysis
	Biomass combustion	Biomass torrefaction
	Combustion	Thermal-NO
	Combustion	Fuel-NO

Volume	Papermaking	Fibre - Water -phases
	Metal alloys	Nano-particles
Surface area	Metal alloys	Surface tension
potential	Papermaking	Aqueous ion exchange
Electrochemica	l .	

Kangas, P. 2015., Dissertation, Åbo Akademi University

Methodology – Constrained Free Energy (CFE) method

- **V**TT
- Non-stoichiometric chemical system is solved by minimising the Gibbs energy with Lagrange method of undetermined multipliers

$$L = G - \pi \Psi = \sum_{k=1}^{K} n_k \mu_k - \sum_{l=1}^{L} \pi_l \left(\sum_{k=1}^{K} v_{kl} n_k - b_l \right) \quad \left(\frac{\partial L}{\partial n_k} \right)_{n_{n\neq k}} = \mu_k - \sum_{l=1}^{L} \pi_l v_{kl} = 0 \qquad \left(\frac{\partial L}{\partial \pi_l} \right)_{\pi_{n\neq l}} = \sum_{k=1}^{K} v_{kl} n_k - b_l = 0$$

 Additional immaterial components and constituents are implemented into system for applying chemical kinetics

	$v_{1,1}$	•	$V_{1,L}$	$V_{1,L+1}$		$V_{1,L+Y}$
	•	•	•	•		
N _	$V_{K,1}$	•	$V_{K,L}$			
IN =	0		0	$\mathcal{V}_{K+1,L+1}$	•	•
	0		0			$\mathcal{V}_{K+X,L+Y}$

- Chemical system is constrained by defining immaterial constraints based on the extent of reactions.
 - $\xi_x = C_x$ (constant value)
 - $\xi_x = f_x(T)$ (temperature dependent model)

 $\xi_x = \int_{0}^{t} r_x dt$ (global and elementary kinetic reactions)

 $r_x = r_{xf} - r_{xr}$ $r = k \prod_b [j]^{a_b}$ $k = AT^B \exp^{(-E/RT)}$

NO emissions

Modelling NO emissions with CFE

Aim:

- Evaluate how reaction kinetic models could be implemented into CFE methodology
- Model thermal and fuel NO emissions

CFE method

- Constrained thermodynamic equilibrium with major kinetic reactions implemented [2,3]
- ChemSheet [15] applied as modelling tool

Reference and validation

- Pure kinetic model of combustion and NO formation ÅA mechanism
- 371 kinetic reactions applied
- ChemKin applied as modelling tool

(i) NO emissions - Dry air Extended stoichiometric matrix for CFE

Table - Extended stoichiometric matrix; Total 60 gaseous species and 2 immaterial constraints; $r_1: N_2 + O \leftrightarrow NO + N$; $r_2: N + O_2 \leftrightarrow NO + O$

Phase	Constituent	0	Ν	N*	NO*
Gas	0	1			
	0,	2			
	N		1	1	
	N ₂		2		
	NŌ	1	1		1
	NO ₂	2	1		
Constrair	nts $r_1: N_2 + O \leftrightarrow$	NO + N		1	1
	$r_2: N + O_2 \leftrightarrow$	NO + O		-1	1

(i) NO emissions - Dry air

- 'Synthetic' air: 21 v-% of O_2 and 79 v-% of N_2 .
- No moisture.
- Heating air (no combustion here)
- Temperature range: 1200-2200°C
- Pressure 1 bar
- Zeldovich mechanism applied
 - 2 reaction limiting NO formation
 - $r_1: N_2 + O \leftrightarrow NO + N$
 - $r_2: N + O_2 \leftrightarrow NO + O$
 - Local equilibrium considered otherwise (e.g. amount of radical O)

=> CFE model agrees with kinetic model when dry air is considered

1E+5

Figure 6. NO formation in dry air.

(ii) NO emissions - Combustion of CO Extending stoichiometric matrix

(ii) NO emissions - Combustion of CO; Dry air

- Combustion of carbon monoxide
- Excess air: λ = 1.2
- Dry air: 21 v-% of O₂ and 79 v-% of N₂
- Two additional constraints for CO + O:
 - $r_2: CO + O_2 \leftrightarrow CO_2 + O$ • $r_3: CO + O + M \leftrightarrow CO_2 + M$
- Simplified Zeldovich mechanism for N:

r₁: N₂ + O ↔ NO + N
⇒NO formation during combustion (CFE) agrees with reference model (pure kinetics) when dry air is considered

Figure 13. NO formation; CO combustion; 1500°C; Dry air;

(iii) NO emissions - Combustion of CO; Wet air

- Rapid combustion if moisture present
- Super-equilibrium of O-, H-, and OH-radicals formed
- ⇒Additional elementary reactions needed (O-, H- and OH- radicals)
- ⇒Additional constraints implemented to calculation and stoichiometric matrix is extended again.

Table 4. Elementary reactions for CO, wet air.

Constituent	Reaction
СО	CO+OH↔CO ₂ +H
	CO+O+M↔CO ₂ +M
Н	CO+OH↔CO ₂ +H
	0+0H↔H+0₂
ОН	CO+OH↔CO ₂ +H
	O+OH↔H+O ₂
	OH+OH↔H₂O+O
0	O+OH↔H+O ₂
	$CO+O+M\leftrightarrow CO_2+M$
	OH+OH↔H₂O+O

(iii) NO emissions - Combustion of CO; wet air **Extending stoichiometric matrix**

(iii) NO emissions - Combustion of CO; Quasi steady-state assumption

Figure 16. NO formation; Euler-method

 Two competing reactions (O-radical)

- $r_2: CO+O_2 \leftrightarrow CO_2+O$
- r₃: CO+O+M↔CO₂+M
- Oscillation, when

$$\Delta r_2 \approx \Delta r_3 \approx n_0$$

- One possible solution is quasi steady-state assumption
 - d[O]/dt=0=>
 - k₃[CO][O][M]=k₂[CO][O₂]
 - [O]=k₂/k₃*[O₂]/[M]
- ⇒Improves stability
- \Rightarrow Fails close to O(eq.)

Quasi steady-state

Figure 18. NO formation; Steady-state assumption.

(iv) NO emissions - Combustion of CH₄

- Larger amount of reactions are involved for CH₄ combustion and related
- Several hydrocarbons involved for NO_X formation
- ⇒Need for extending stoichiometric matric further
- ⇒Several competing reactions could cause numerical problems during simulation; stiff chemical system
- ⇒Global kinetic model applied instead of models based on the elementary kinetic reactions

Table 6	Applied global kinetic model
Reactio	n
R1	N+NO↔N ₂ +O
R2	$CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2$
R3	$CH_4+H_2O\rightarrow CO+3H_2$
R4	$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$
R5	$H_2O \rightarrow H_2 + \frac{1}{2}O_2$
R6	$CO+H_2O\leftrightarrow CO_2+H_2$
R7	$NH_3 + O_2 \rightarrow NO + H_2O + \frac{1}{2}H_2$
R8	$NH_3 + NO \rightarrow N_2 + H_2O + \frac{1}{2}H_2$

(iv) NO emissions - Combustion of CH₄

constrain	1.3,										
Phase	Constituent	0	Н	С	Ν	Ar	CH_4^*	CO*	NH ₃ *	NO*	H_2^*
Gas	СО	1		1				1			
	CO ₂	2		1							
	H ₂		2								1
	H ₂ O	1	2								
	0	1									
	CH_4		4	1			1				
	NH ₃		3		1				1		
	NO	1			1					1	
	Ar					1					
Constraints	r ₁ : ΣΔr _{CH4}						1				
	r ₂ : ΣΔr _{co}							1			
	r ₃ : ΣΔr _{NH3}								1		
	r ₄ : ΣΔr _{NO}									1	
	r ₅ :ΣΔr _{H2}										1

Table 6. Extended stoichiometric matrix; Total 60 gaseous species and 5 immaterialconstraints;

(iv) NO emissions - Combustion of CH₄

Separate models for:

- oxidation of methane
- oxidation of carbon monoxide
- oxidation of ammonia
- CFE method is applicable for modelling fuel NO emissions if global kinetic models are used

=> However timing is slightly off as model does not consider radical build-up

Figure 12. Fuel NO emissions [IV]. Biomass is modelled as methane, and nitrogen in biomass as ammonia. a) Combustion of hydrocarbons. b) NO emissions. The temperature is 1,500°C and λ =1.2. Here EQ refers to the equilibrium concentrations, CFE to the super-equilibrium concentrations and DKM to the validation data obtained from the detailed kinetic model.

Gasification - Background

- During biomass gasification <u>light hydrocarbons</u> (e.g. : CH₄, C₂H₂, C₂H₄, C₂H₆, C₃H₈, C₆H₆), <u>ammonia</u>, <u>tars</u> and <u>char</u> are formed among syngas.
- This affects on the composition of major species in syngas (CO, CO₂, H₂, H₂O)
- Assuming thermodynamic equilibrium the 'superequilibrium' of hydrocarbons, ammonia, tar and char is not taken into account
- Phenomena based and semi-empirical models have been developed for describing the superequilibrium
- Phenomena based models become tedious with several parameters. Current semi-empirical models provide only ad-hoc solution.
- Aim: evaluate the use of experimental models with CFE and to study different model structures

Figure 2. Example of multi-step semi-empirical model.

Gasification -Cases with different sets of constraints

- **V**TT
- EQ: Thermodynamic equilibrium is used as base case. No additional constraints are defined.
- Super-EQ1: super-equilibrium where carbon conversion, tar and ammonia formation are defined is studied. In addition the amount of carbon in volatile hydrocarbons (CH₄, C₂H₂, C₂H₄, C₂H₆, C₃H₈ and C₆H₆) is fixed.
- Super-EQ2 where previous case is extended by introducing additional constraint for the amount of hydrogen in volatile hydrocarbons.
- Super-EQ3 replaces the hydrogen constraint by introducing a constraint for CH₄
- Super-EQ4 defines the amount of carbon bound to unsaturated hydrocarbons hydrocarbons (C₂H₂ and C₂H₄) and benzene (C₆H₆)
- Super-EQ5 introduces a fully constrained system where the amount of every hydrocarbon constituent is defined by empirical models. However the water-gas shift reaction is not constrained, but local equilibrium is assumed.

Extended stoichiometric matrix

- Components: C-O-H-N-S
- Phases: gas (14 constituents), biomass (4), water, char and ash.
- Extending matrix with CFE method:
 - 12 virtual components
 - 12 virtual constituents
- Extended model is used to predict the super-equilibrium of char, tar, ammonia, and light hydrocarbons in syngas.
- Different combinations of immaterial constraints are evaluated from thermodynamic equilibrium to fully constrained system

Gasification - EQ - stoichiometric matrix

Phases	Constituents	Cases	С	0	Н	Ν	Si
			0,1,2,3,4,5	0,1,2,3,4,5	0,1,2,3,4,5	0,1,2,3,4,5	0,1,2,3,4,5
Gas phase	CO	0,1,2,3,4,5	1	1			
	H_{2}	0,1,2,3,4,5			2		
	$\bar{CO_2}$	0,1,2,3,4,5	1	2			
	N_2^{-}	0,1,2,3,4,5				2	
	H₂O	0,1,2,3,4,5		1	2		
	CH₄	0,1,2,3,4,5	1		4		
	C ₂ H ₂	0,1,2,3,4,5	2		2		
	$\overline{C_2H_4}$	0,1,2,3,4,5	2		4		
	$\overline{C_2H_6}$	0,1,2,3,4,5	2		6		
	$C_{3}H_{8}$	0,1,2,3,4,5	3		8		
	C ₆ H ₆	0,1,2,3,4,5	6		6		
	$\tilde{C_{10}H_8}$	0,1,2,3,4,5	10		8		
	NH ₃	0,1,2,3,4,5			3		
	O_2	0,1,2,3,4,5		2			
Biomass	C	0,1,2,3,4,5	1				
	0	0,1,2,3,4,5		1			
	Н	0,1,2,3,4,5			1		
	Ν	0,1,2,3,4,5				1	
Water	H₂O	0,1,2,3,4,5		1	2		
Char	Ċ	0,1,2,3,4,5	1				
Ash	SiO ₂	0,1,2,3,4,5		2			1

No additional virtual constraints

Super-EQ1 - Extended stoichiometric matrix. C-O-H-N-Si system.

Phases	Constituents	Cases	С	0	Н	Ν	Si	Char*	HC_C*	Tar*	Amm*
			0,1,2,3,4,5	0,1,2,3,4,5	0,1,2,3,4,5	0,1,2,3,4,5	0,1,2,3,4,5	1,2,3,4,5	1,2,3,4	1,2,3,4,5	0,1,2,3,4,5
Gas phase	CO	0,1,2,3,4,5	1	1							
	H_{2}	0,1,2,3,4,5			2						
	CO ₂	0,1,2,3,4,5	1	2							
	N_2	0,1,2,3,4,5				2					
	H₂O	0,1,2,3,4,5		1	2						
	CH₄	0,1,2,3,4,5	1		4				1		
	C ₂ H ₂	0,1,2,3,4,5	2		2				2		
	$C_{2}H_{4}$	0,1,2,3,4,5	2		4				2		
	$C_2 H_6$	0,1,2,3,4,5	2		6				2		
		0,1,2,3,4,5	3		8				3		
	C ₆ H ₆	0,1,2,3,4,5	6		6				6		
	$\tilde{C_{10}H_8}$	0,1,2,3,4,5	10		8					10	
	NH ₃	0,1,2,3,4,5			3						1
	0 ₂	0,1,2,3,4,5		2							
Biomass	C	0,1,2,3,4,5	1								
	0	0,1,2,3,4,5		1							
	Н	0,1,2,3,4,5			1						
	Ν	0,1,2,3,4,5				1					
Water	H₂O	0,1,2,3,4,5		1	2						
Char	C	0,1,2,3,4,5	1					1			
Ash	SiO ₂	0,1,2,3,4,5		2			1				
Constraints	R_Char	1,2,3,4,5						1			
	R_HC_C	1,2,3,4							1		
	R_Tar	1,2,3,4,5								1	
	R_Amm	1,2,3,4,5									1

Constraints for char, tar, ammonia, and carbon in hydrocarbons

Super-EQ2 - Extended stoichiometric matrix

Phases	Constituents	Cases	С	0	Н	Ν	Si	Char*	HC_C*	HC_H*	Tar*	Amm*
			0,1,2,3,4,5	0,1,2,3,4,5	0,1,2,3,4,5	0,1,2,3,4,5	0,1,2,3,4,5	1,2,3,4,5	1,2,3,4	2	1,2,3,4,5	0,1,2,3,4,5
Gas phase	CO	0,1,2,3,4,5	1	1								
	H_{2}	0,1,2,3,4,5			2							
	CO_2	0,1,2,3,4,5	1	2								
	N_2	0,1,2,3,4,5				2						
	H ₂ O	0,1,2,3,4,5		1	2							
	CH₄	0,1,2,3,4,5	1		4				1	4		
	$C_{2}H_{2}$	0,1,2,3,4,5	2		2				2	2		
	$C_{2}H_{4}$	0,1,2,3,4,5	2		4				2	4		
		0,1,2,3,4,5	2		6				2	6		
	C ₃ H ₈	0,1,2,3,4,5	3		8				3	8		
C ₆ C ₁	C _e H _e	0,1,2,3,4,5	6		6				6	6		
	C ₁₀ H ₈	0,1,2,3,4,5	10		8						10	
	NH₃	0,1,2,3,4,5			3							1
	0, °	0,1,2,3,4,5		2								
Biomass	C	0,1,2,3,4,5	1									
	0	0,1,2,3,4,5		1								
	Н	0,1,2,3,4,5			1							
	Ν	0,1,2,3,4,5				1						
Water	H ₂ O	0,1,2,3,4,5		1	2							
Char	C	0,1,2,3,4,5	1					1				
Ash	SiO ₂	0,1,2,3,4,5		2			1					
Constraints	R_Ćhar	1,2,3,4,5						1				
	R_HC_C	1,2,3,4							1			
	R_HC_H	2								1		
	R_Tar	1,2,3,4,5									1	
	R Amm	1,2,3,4,5										1

Constraints for char, tar, ammonia, carbon in hydrocarbons and hydrogen in hydrocarbons

Super-EQ3 - Extended stoichiometric matrix C-O-H-N-Si system.

Phases	Constituents	Cases	С	0	Н	Ν	Si	Char*	HC_C*	Tar*	Amm*	CH ₄ *
			0,1,2,3,4,5	0,1,2,3,4,5	0,1,2,3,4,5	0,1,2,3,4,5	0,1,2,3,4,5	1,2,3,4,5	1,2,3,4	1,2,3,4,5	0,1,2,3,4,5	3,5
Gas phase	CO	0,1,2,3,4,5	1	1								
	H_2	0,1,2,3,4,5			2							
	\overline{CO}_2	0,1,2,3,4,5	1	2								
	N_2	0,1,2,3,4,5				2						
	H₂O	0,1,2,3,4,5		1	2							
	CH₄	0,1,2,3,4,5	1		4				1			1
	C ₂ H ₂	0,1,2,3,4,5	2		2				2			
	$\overline{C_2H_4}$	0,1,2,3,4,5	2		4				2			
	$C_2 H_6$	0,1,2,3,4,5	2		6				2			
	$\bar{C_3H_8}$	0,1,2,3,4,5	3		8				3			
	C ₆ H ₆	0,1,2,3,4,5	6		6				6			
	$C_{10}H_8$	0,1,2,3,4,5	10		8					10		
	NH ₃	0,1,2,3,4,5			3						1	
	0 ₂	0,1,2,3,4,5		2								
Biomass	C	0,1,2,3,4,5	1									
	0	0,1,2,3,4,5		1								
	Н	0,1,2,3,4,5			1							
	Ν	0,1,2,3,4,5				1						
Water	H₂O	0,1,2,3,4,5		1	2							
Char	C	0,1,2,3,4,5	1					1				
Ash	SiO ₂	0,1,2,3,4,5		2			1					
Constraints	R_Ćhar	1,2,3,4,5						1				
	R_HC_C	1,2,3,4							1			
	R_Tar	1,2,3,4,5								1		
	R_Amm	1,2,3,4,5									1	
	R CH₄	3,5										1

Constraints for char, tar, ammonia, carbon in hydrocarbons and CH₄

Super-EQ4 - Extended stoichiometric matrix. C-O-H-N-Si system.

Phases	Constituents	Cases	С	0	Н	Ν	Si	Char*	HC_C*	Tar*	Amm*	UN_C*
			0,1,2,3,4,5	0,1,2,3,4,5	0,1,2,3,4,5	0,1,2,3,4,5	0,1,2,3,4,5	1,2,3,4,5	1,2,3,4	1,2,3,4,5	0,1,2,3,4,5	4
Gas phase	CO	0,1,2,3,4,5	1	1								
	H_{2}	0,1,2,3,4,5			2							
	CO_2	0,1,2,3,4,5	1	2								
	N_2	0,1,2,3,4,5				2						
	H₂O	0,1,2,3,4,5		1	2							
	CH₄	0,1,2,3,4,5	1		4				1			
	C ₂ H ₂	0,1,2,3,4,5	2		2				2			2
	$C_{2}H_{4}$	0,1,2,3,4,5	2		4				2			2
		0,1,2,3,4,5	2		6				2			
	C ₃ H ₈	0,1,2,3,4,5	3		8				3			
	C _e H _e	0,1,2,3,4,5	6		6				6			6
	C ₁₀ H ₈	0,1,2,3,4,5	10		8					10		
	NH ₃	0,1,2,3,4,5			3						1	
	0 ₂ °	0,1,2,3,4,5		2								
Biomass	C	0,1,2,3,4,5	1									
	0	0,1,2,3,4,5		1								
	Н	0,1,2,3,4,5			1							
	Ν	0,1,2,3,4,5				1						
Water	H ₂ O	0,1,2,3,4,5		1	2							
Char	C	0,1,2,3,4,5	1					1				
Ash	SiO ₂	0,1,2,3,4,5		2			1					
Constraints	R_Ćhar	1,2,3,4,5						1				
	R_HC_C	1,2,3,4							1			
	R_Tar	1,2,3,4,5								1		
	R Amm	1,2,3,4,5									1	
	RUNC	4										1

Constraints for char, tar, ammonia, carbon in hydrocarbons and carbon in unsaturated hydrocarbons + aromatics

Super-EQ5 - Extended stoichiometric matrix. C-O-H-N-Si system.

Phases CH4* 3,5 C2H25 C₂H₄* С Н Char* C₂H₆* C₃H₈* $C_6H_6^*$ Constituents Cases 0 Ν Si Tar* Amm' 0,1,2,3,4,5 0,1,2,3,4,5 0,1,2,3,4,5 0,1,2,3,4,5 0,1,2,3,4,5 1,2,3,4,5 1,2,3,4,5 0,1,2,3,4,5 0,1,2,3,4,5 Gas phase CO 1 1 H_2 0,1,2,3,4,5 2 CO_2 0,1,2,3,4,5 1 2 N_2 0,1,2,3,4,5 2 H₂O 0,1,2,3,4,5 2 1 CH₄ 0,1,2,3,4,5 4 1 1 C_2H_2 2 2 0,1,2,3,4,5 1 C_2H_4 2 0,1,2,3,4,5 $C_2 H_6$ 2 0,1,2,3,4,5 C₃H₈ 3 0,1,2,3,4,5 C₆H₆ C₁₀H₈ 0,1,2,3,4,5 6 6 10 0,1,2,3,4,5 10 8 NH₃ 3 0,1,2,3,4,5 1 0_{2} 0,1,2,3,4,5 2 С 0,1,2,3,4,5 Biomass 1 0,1,2,3,4,5 0 1 Н 0,1,2,3,4,5 1 0,1,2,3,4,5 Ν 2 Water H_2O 0,1,2,3,4,5 1 Char С 0,1,2,3,4,5 1 1 SiO₂ 0,1,2,3,4,5 2 Ash R Char Constraints 1,2,3,4,5 R_Tar 1,2,3,4,5 1 R Amm 1,2,3,4,5 1 R CH₄ 3,5 $R_C_2H_2$ 5 $R_C_2H_4$ 5 $R_C_2H_6$ 5 $R_C_3H_8$ 5 R C_cH_c 5

Constraints for char, tar, ammonia, CH₄, C₂H₂, C₂H₄, C₂H₆, C₃H₈ and C₆H₆

Full extended stoichiometric matrix. C-O-H-N-Si system.

Phases	Constituents	Cases	C	012245	H	N	Si	Char*	HC_C*	HC_H*	Tar*	Amm*	CH4*	C ₂ H ₂ *	C ₂ H ₄ *	C ₂ H ₆ *	C ₃ H ₈ [*]	C ₆ H ₆ *	UN_	C*
Gas nhase	<u> </u>	0,1,2,3,4,5	1	1	0,1,2,3,4,5	0,1,2,3,4,5	0,1,2,3,4,3	1,2,3,4,3	1,2,3,4	2	1,2,3,4,5	0,1,2,3,4,5	3,5	5	5		5			4
Ous phase	н	0,1,2,3,4,5			2															
	Γ_2	0,1,2,3,4,5	1	2	2															
	N 002	0,1,2,3,4,5		L		2														
		0,1,2,3,4,5		1	2	L														
	CH.	0,1,2,3,4,5	1		4				1	4			1							
	C.H.	0,1,2,3,4,5	2		2				2	2				1						2
	C_H	0,1,2,3,4,5	2		4				2	4					1					2
	C ₂ H ₄	0,1,2,3,4,5	2		6				2	6						1				-
	C_H_	0,1,2,3,4,5	3		8				3	8						•	1			
	C.H.	0,1,2,3,4,5	6		6				6	6							•	1		6
	C.H.	0,1,2,3,4,5	10		8				Ũ	Ũ	10							•		Ũ
	NH ₂	0,1,2,3,4,5	10		3							1								
	0,	0,1,2,3,4,5		2	Ŭ							•								
Biomass	C	0,1,2,3,4,5	1	-																
	0	0,1,2,3,4,5		1																
	Ĥ	0,1,2,3,4,5		•	1															
	N	0,1,2,3,4,5				1														
Water	H₂O	0,1,2,3,4,5		1	2															
Char	C	0,1,2,3,4,5	1					1												
Ash	SiO ₂	0,1,2,3,4,5		2			1													
Constraints	R Char	1,2,3,4,5						1												
	R HC C	1,2,3,4							1											
	R_HC_H	2								1										
	R_Tar	1,2,3,4,5									1									
	R_Amm	1,2,3,4,5										1								
	R_CH₄	3,5											1							
	R_C ₂ H ₂	5												1						
	$R_C_2H_4$	5													1					
	R_C ₂ H ₆	5														1				
	$R_C_3H_8$	5															1			
	$R_C_6H_6$	5																1		
	R_UŇ_Č	4																		1

Gasification – Applied constraints

- Temperature dependent constraints:
 - carbon in char
 - carbon in hydrocarbons
 - hydrogen in hydrocarbons
 - carbon in unsaturated and aromatics
 - carbon in CH₄,C₂H₂,C₂H₄,C₂H₆, C₃H₈
- Constant values:
 - carbon in tar
 - nitrogen in ammonia
 - carbon in C₆H₆
- Models based on empirical data.

Table 8. Applied constraints for SuperEQ1 – SuperEQ5 cases. Experimental model is taken from literature.

Constraint	Unit	Expression	Case
C in char	[mol/kg _{carbon in dry biomass}]	71.664+0.012906*T	1,2,3,4,5
C in tar	[mol/kg _{dry biomass}]	3.0	1,2,3,4,5
N in ammonia	[mol/kg _{dry biomass}]	0.042	1,2,3,4,5
C in hydrocarbons	[mol/kg _{dry biomass}]	17.642 - 0.009545*T	1,2,3
H in hydrocarbons	[mol/kg _{dry biomass}]	50.376 - 0.02732*T	2
C in unsaturated and aromatic	[mol/kg _{dry biomass}]	7.7231 - 0.00408*T	4
CH ₄	[mol/kg _{dry biomass}]	7.074-0.003*T	3,5
C ₂ H ₂	[mol/kg _{dry biomass}]	0.06454-0.00004*T	5
C ₂ H ₄	[mol/kg _{dry biomass}]	2.987-0.002*T	5
C ₂ H ₆	[mol/kg _{dry biomass}]	1.196-0.001*T	5
C ₃ H ₈	[mol/kg _{dry biomass}]	0.150921-0.000155*T	5
C ₆ H ₆	[mol/kg _{dry biomass}]	0.27	5

Gasification – Validation

- Five different gasification setups modelled (A-E)
- Six different model construction evaluated (Cases EQ, Super-EQ1-Super-EQ5)

		А	В	С	D	E
C in dry biomass	[w-%]	50.7	50.7	50.7	51.3	51.1
H in dry biomass	[w-%]	6.2	6.2	6.2	6.1	6.1
N in dry biomass	[w-%]	0.1	0.1	0.1	0.5	0.1
O in dry biomass	[w-%]	42.8	42.8	42.8	39.5	42.3
Ash in dry biomass	[w-%]	0.2	0.2	0.2	2.6	0.4
Fuel moisture	[%]	6.9	6.9	6.9	10.4	7.4
Gasifier temp	[C]	823	838	886	830	868
Pressure	[MPa]	0.250	0.250	0.250	0.250	0.250
Oxygen-to-fuel ratio	[kg/kg dry fuel]	0.31	0.37	0.42	0.37	0.46
Steam-to-fuel ratio	[kg/kg dry fuel]	0.5	0.54	0.54	0.54	0.75
CO	[v-%]	0.144	0.132	0.133	0.122	0.103
CO ₂	[v-%]	0.211	0.220	0.222	0.222	0.207
H ₂	[v-%]	0.167	0.154	0.156	0.167	0.149
CH ₄	[v-%]	0.056	0.055	0.056	0.056	0.046
H ₂ O	[v-%]	0.400	0.418	0.411	0.411	0.483

Table 9. Validation data. Nitrogen removed. Data from [1].

VTT

Gasification – Validation: Measured vs. modelled syngas components (CO, H₂O, CO₂, H₂ and CH₄)

Figure 7. Biomass gasification and major synthesis gas species (CO, H_2O , CO_2 , H_2 and CH_4) [II]. Four different models structures presented: a) Thermodynamic equilibrium without constraints. b) Carbon conversion, tar and ammonia formation and the total amount of light hydrocarbons are constrained. c) An additional constraint for methane is defined. d) The amount of every hydrocarbon is constrained and only water-gas is considered as local equilibrium. Validation data is obtained from [41].

Gasification - Validation of CFE model with other gasifiers

Figure 8. Validation of the biomass gasification model [II] in a) an air/steam-blown fluidised bed gasifier and in b) an air-blown circulating bed gasifier. Major syngas components (CO, CO₂, H₂ and CH₄) in dry gas are presented. Validation data of is obtained from [104,105].

In Delft: Biomass gasification in supercritical water

Experimental Results

Model Predictions with Approach I

■ Model Predictions with Approach II # Model Predictions with GTE

The constraints that have been used for the different cases shown in Figs. 1-9.

Yakaboylu, O. et al., Fuel Processing Technology, 138, (2015), 74-85

Conclusions

Conclusions – this study

- CFE is successfully applied for modelling biomass gasification and NO emissions
- Experimental model, global kinetic models and reactions based elementary kinetic reactions can be implemented as constraints in CFE calculation
- Requires less parameters than a mechanistic kinetic approach.
- Best result are achieved when moderate amount of reactions are limiting the system.

Applications	Types of constr	aints		
	Constant values	Experimental Models	Global kinetic models	Models based on elemen- tary kinetic reactions
Torrefaction			+ Applicable for char conversion [I] - Not feasible for predicting gaseous phase [I]	
Pyrolysis			+ Applicable for char conversion [I] - Not feasible for predicting gaseous phase [I]	
Gasification	+ Applicable to predicting, tar, and ammonia [II]	+ Applicable to predicting methane and char [II]	+ Applicable for char gasification [I]	
Recovery boiler	+ Applicable to the enrichment of alkali metals, sulfur and chlo- rine [III]			
NO emissions			+ Applicable for Fuel NO emissions [IV]	± Plausible for Thermal NO emissions [IV - Not feasible for Fuel NO emissions [IV]

Kangas, P. 2015., Dissertation, Abo Akademi University

method; ± indicates possibilities of using CFE method

Conclusions - Other uses of kinetic constraints

- In chemical and metallurgical reactors for improved control of autogenic energy efficiency (up to 40 % savings in energy and/or CO₂ release)
- In rotary drums and other furnaces for replacement of fossil fuels with biofuel
- In pulp and papermaking processes for control of chemical dosage and process pH
- In developing new chemistry concepts for in-situ reactions

Conclusions

- CFE provides a rigorous method to include work-related and dynamic factors to min(G)
- Serves for quantitative calculation of both partial equilibria and para-equilibrium systems in chemistry and materials science
- Can be used for approximate local equilibria in complex reaction systems
- With accurate reaction kinetics, will provide data of reaction rate controlled local chemical equilibrium systems
- Has gained increasing interest with its wide applicability in both materials and process research*
- Overviews published in: <u>www.vtt.fi/inf/pdf/technology/2014/T160.pdf</u> www.vtt.fi/inf/pdf/science/2015/S92.pdf

Introduction to constrained Gibbs energy methods in process and materials research Perti Koukkari

*https://www.mendeley.com/groups/2493581/constrained-free-energy-cfe-method/