Dynamic on-line monitoring and end-point control of dephosphorisation in the BOF converter process

RFCS Project BOFdePhos

Dr. Martin Schlautmann, VDEh-Betriebsforschungsinstitut, Düsseldorf
GTT Users Meeting, 01- 03 July 2015 at GTT, Herzogenrath
Contents

- Introduction to BOF process
- Objectives of BOFdePhos project
- Main approaches and structure of the project
- Current status of dynamic BOF model of BFI
- Conclusions
Introduction to BOF process (1)

- In Germany roughly 2/3 of the crude steel (ca. 28 Mt/a) are produced via the blast furnace – BOF converter route

- In the BOF process
 - oxygen is blown via a top-lance into the steel bath (ca. 80% hot metal from blast furnace and 20% scrap)
 - which in many plants additionally is stirred by bottom purging of inert gas (N\textsubscript{2} or Ar)
 - formation of a basic slag on top of the melt is achieved by addition of lime or dolomite

- This is a highly exothermic, complex, oxidising-refining process for removal of hot metal impurities from iron - especially carbon, silicon and phosphorus - and achievement of an optimal end temperature for further secondary metallurgical treatment of the crude steel
Introduction to BOF process (2)

- An oxygen supply beyond the demands for decarburisation and dephosphorisation results in undesired high combustion of iron and manganese and increased oxygen content of steel
 - losses in metallic yield
 - and increased consumption of deoxidation aluminum

- Process behaviour can be measured only with interruption of the oxygen blowing by a sublance or indirectly, e.g. via analysis of the off-gas composition

- On-line information on dephosphorisation behaviour is not available

- Application of complementary process models necessary
Main objectives of the BOFdePhos project

Development of a **comprehensive dynamic process model for the BOF**

- which can be used for on-line monitoring and control of the process behaviour
- with focus on dephosphorisation
- taking into account the actual slag conditions and the melt temperature
- based on detailed studies of the thermodynamic and reaction kinetic fundamentals
- application of new sensors measuring the oxygen activity and height of the converter slag

- determination of the **end-point of the process** with respect to the phosphorus content and the melt temperature with higher accuracy
- application of the model in a predictive mode to calculate **dynamic set-points** for oxygen blowing, slag former and heating or cooling material additions in the final blowing phase
- achievement of the target values at minimum cost and time with maximum yield
BOFdePhos project partners

- **VDEh-Betriebsforschungsinstitut (BFI)**
 Private-sector institute for applied research and development in steel technology

- **Tata Steel UK (Tata)**
 Steelmaking company involved with its BOF plants at Port Talbot and Ijmuiden

- **SMS Siemag AG (SMS)**
 Supplier for steelmaking and processing plants

- **Gesellschaft für Technische Thermochemie und –physik mbH (GTT)**
 Supply and consulting with respect to thermochemical databases and related software

- **Kungliga Tekniska Hoegskolan (KTH)**
 Technical university with wide activities in metallurgical and materials processes

- **Minkon GmbH (Minkon)**
 Supplier for sampling technology and measuring sensors for metallurgical processes
Main approaches of the BOFdePhos project

- **Enhancement** of existing **dynamic converter models** by
 - fundamental investigations of **thermodynamic equilibrium** conditions for dephosphorisation in BOF based on appropriately extended thermodynamic database using ChemApp or FactSage
 - investigations including laboratory experiments with respect to **lime dissolution**
 - CFD simulations of mass flows determining the **reaction kinetics**
 - parameter studies with enhanced dynamic BOF flow-sheet model coupled to new thermodynamic database and incorporating calculated mass flows between relevant reaction zones
 - trials with special **sublance probes** for determination of the **slag oxygen content**

- Development of **model based dynamic control strategies** for precise determination and optimal adjustment of the process end-point regarding phosphorus content and melt temperature in order to achieve direct tapping after sublance measurement without waiting for steel probe analysis
Structure of the BOFdePhos work programme

WP1: Revision of existing models for online control of dephosphatisation and available BOF process data at the industrial plants

Reference of online models and process data

WP2: Set-up of relevant thermodynamic and kinetic calculations (and possibly CFD calculation tools) for enhancement of online models

Reference of thermodynamic and kinetic fundamentals

WP3: Application of new sensors for height and oxygen activity of converter slag

Minkon, Tata, KTH

WP4: Enhancement of dynamic process models for online observation and BOF end point determination with focus on dephosphatisation

Accurate online assessment of actual BOF process state, esp. regarding slag properties and steel phosphorus content

WP5: Development of on-line process control reg. dephosphatisation with predictive models for set-point calculation of oxygen input, slag former, cooling and heating material addition

WP6: Test and verification of process improvement and capabilities of the new control system

Enhanced decision tool for direct BOF tapping

Enhanced determination of correction actions for BOF targets achievement

Tata, BFI, Minkon, SMS

Tata, BFI, all partners
Basic principles of dynamic process models

Dynamic process models are

- based on energy and mass balances
- using thermodynamic equilibrium states and reaction kinetic equations
- solved cyclically along the time axis
- taking into account the respective cyclic process input data (like process gas flow rates) as well as acyclic events (e.g. material additions)
- optionally complemented by balances based on off-gas analyses, e.g. regarding decarburisation
Applications of dynamic process models

Off-line applications

- Process analysis by simulation of heat state evolution based on recorded process data
- Process layout and optimisation by simulation of heat state evolution under systematically varied operating conditions

On-line applications

- Monitoring of evolution of the current heat state
- Prediction of the further heat state evolution, e.g. for end-point determination
- Calculation of set-points for an optimised process control
On-line installations of thermodynamic BFI converter models

1. AOD model
 - TKN Krefeld (2006)

2. VOD model
 - Acroni, Jesenice/Slowenien (2009)
 - Dörrenberg Edelstahl (2011)
 - DEW Siegen (2014)

3. BOF model
 - Saarstahl (2009)
 - HKM (2012)
Structure of dynamic BFI BOF model

Inputs
- charged amounts and analyses
- oxygen- and inertgas-flow
- offgas-flow and analysis

Outputs
- mass balance for metal bath and slag
- weight and analysis of bath and slag
- energy balance
- bath temperature

- material weights, analyses and reference enthalpies
- decarburisation
- dephosphorisation
- oxygen balance and combustion amounts
- energy gain by oxidation
- energy loss by offgas and heat transfer

Diagram

1. Charged amounts and analyses
2. Oxygen- and inertgas-flow
3. Offgas-flow and analysis
4. Material weights, analyses and reference enthalpies
5. Decarburisation
6. Dephosphorisation
7. Oxygen balance and combustion amounts
8. Energy gain by oxidation
9. Energy loss by offgas and heat transfer
10. Mass balance for metal bath and slag
11. Weight and analysis of bath and slag
12. Bath temperature
Thermal model for BOF process

Cyclic energy balance

+ **Current** energy content
 - initial energy content
 - enthalpies of oxidation reactions
 (decarburisation with CO post combustion, dephosphorisation, slagging of metallic elements – Al, Si, Mn, Ti, Cr, Fe)
 - energy losses by off-gas, iron dust, converter walls & radiation

– **Reference** energy content of charged materials
 - hot metal
 - scraps
 - slag formers
 - cooling/heating agents

⇒ **Bath temperature**
Metallurgical model for BOF: basic principle

Cyclic mass balance

+ Input by charged materials
 - hot metal
 - scraps
 - slag formers
 - cooling/heating agents

– Combustion reactions (modelled by dynamic oxygen balance)
 - decarburisation → ΔC
 - dephosphorisation → ΔP
 - slagging of metallic elements
 → ΔAl, ΔSi, ΔMn, ΔTi, ΔCr, ΔFe

⇒ Composition & weight of steel and slag
Metallurgical model for BOF: oxygen balance

Effective oxygen input (within a time interval)

- via the top lance
- by reduction of oxidic additions (e.g. from iron ore)

is distributed with dynamically calculated fractions to

- decarburisation and dephosphorisation
- post-combustion of CO
- nearly complete combustion of the oxygen affine metallic elements (Al and Si)
- combustion of other non-iron metallic elements (e.g. Mn, Ti, Cr)
- combustion of iron (with distinction between cases of soft and hard blowing, taking into account fixed ratio of bivalent and trivalent iron in the slag)
- increase of oxygen activity of the steel bath
Metallurgical model for BOF: decarburisation (1)

Thermodynamic equilibrium contents $[C_Q]$ & $[O_Q]$

- with reactions

 $\frac{1}{2}\{O_2\} = [O]$

 $[C] + [O] = \{CO\}$

 $[Fe] + [O] = (FeO)$

 $(FeO) + [C] = [Fe] + \{CO\}$

- law of mass action regarding carbon steel grades

⇒ depending on

- temperature
- iron oxide activity
- partial pressure of CO gas
Metallurgical model for BOF: decarburisation (2)

- **ΔC-rate limited by**
 - O₂-flow rate (0th order reaction kinetics)
 - diffusive and convective transport (1st order reaction kinetics)

\[
\frac{d[C]}{dt} = - \frac{1}{T_c} (C - C_Q)
\]

- **Correction** of transition 0th → 1st order by
 - off-gas analysis with drop of CO content at ‘critical point’
Off-gas based model correction at critical point

- t_{cr}
- CO_{cr}
- FeO_{cr}
- C_{cr}
Metallurgical model for BOF: dephosphorisation (1)

Thermodynamic equilibrium partition L_P of P between slag and steel

- with reaction
 \[[P] + \frac{5}{2}[O] + \frac{3}{2}(O^{2-}) = (PO_4^{3-}) \]
- law of mass action regarding lime saturated slag conditions
- plant trials with (P_2O_5) contents up to 2.6 %

\[
\Rightarrow \log L_P = \log \left(\frac{P_Q}{P_Q^*} \right) = -11.8 + \frac{23306}{T} + 2.5 \cdot \log(Fe) + \left(0.06404 - \frac{267.8}{T} \right) \cdot (Fe) \\
- \left(0.0005347 - \frac{1.959}{T} \right) \cdot (Fe)^2 + \left(16.09 - \frac{32941}{T} \right) \cdot [Mn]
\]

\[
\Rightarrow [P_Q] = \frac{[P_0] \cdot m_{B0} + 100 \cdot m_P}{m_B + L_P \cdot m_S}
\]
Metallurgical model for BOF: dephosphorisation (2)

- Deviation from lime saturation by

 \[D(CaO) = 68.1 - 0.3328 (FeO) - 0.0024 (FeO)^2 - (CaO)^2 > 0 \]

 \[\Rightarrow [P_Q] \rightarrow [P_Q] + a_S + b_S \cdot D(CaO) \]

 with model parameters \(a_S, b_S \), which have to be adapted to the slag operation practice of the respective BOF process

- \(\Delta P \)-rate limited by

 - diffusive and convective transport (1st order reaction kinetics)

 \[\frac{d[P]}{dt} = - \frac{1}{T_P(QI)} ([P] - [P_Q]) \]

 - where time parameter \(T_P \) decreases with increasing inert gas flow rate \(Q_I \)
Heat state evolution for BOF example heat (1)

(a) lance oxygen
lance height

(b) lance oxygen
decarburisation
post combustion
Fe - combustion
Al-, Si - combustion

(c) temperature in °C

(d) C content (0 - 6.0 %)
C content (0 - 0.5 %)
C equilibrium

© VDEh-Betriebsforschungsinstitut GmbH
Heat state evolution for BOF example heat (2)
BOF model accuracies: temperature and carbon

Temperature

Number of Heats: 508
Mean Value: 0.3 K
Standard Deviation: 19.5 K

Carbon content

Number of Heats: 508
Mean Value: 18 ppm
Standard Deviation: 128 ppm
Phosphorus content

Number of Heats: 508
Mean Value: -3 ppm
Standard Deviation: 69 ppm

Slag FeO content

Number of Heats: 486
Mean Value: 0.31 %
Standard Deviation: 2.76 %
Comprehensive optimised BOF process control

- Model-based process observation by
 - Thermodynamic models for decarburisation and dephosphorisation
 - Dynamic oxygen balance
 - Dynamic energy balance

- Prediction of
 - Decarburisation
 - Dephosphorisation
 - Steel temperature

- Current status of the heat
 - Steel and slag composition
 - Steel temperature

- \(\text{O}_2 \) for decarburisation
- \(\text{O}_2 \) for iron combustion and \(\text{CaO} \) for slag conditioning to adjust the phosphorus content
- \(\text{O}_2 \) for iron combustion and heating/cooling materials to adjust the steel temperature

- Dynamic control functions
Conclusions

Dynamic BOF process model of BFI

- is based on cyclically solved thermodynamic and reaction kinetic equations
- monitors the current heat state
- predicts its further evolution, e.g. for end-point control and calculation of optimal set-points regarding oxygen blowing, lime addition, addition of heating or cooling materials
- shall be improved regarding modelling of dephosphorisation (equilibrium P-partition, process kinetics, lime dissolution) within BOFdePhos research project