Modelling Viscosity of Molten Oxides (HotVeGas)

02.07.2015 Guixuan Wu

Introduction & motivation

The **IGCC** technology (**Integrated Gasification Combined Cycle**) based Coal power plants:

- a high efficiency (ca. 45% currently, >50% in 5 years, >55% in 12 years);
- an opportunity for effective CO₂ capture and storage;

 the core of an IGCC power plant is the gasifier.

Introduction & motivation

The majority of the successful coal gasification processes developed after 1950 are performed by **entrained-flow slagging gasifiers**, such as **GE Energy Gasifier**.

Source: R.W. Breault, Energies, 3 (2010) 216-240.

Single phase slag systems					
	Temperature & Composition-				
Temperature-	related models				
related models	Non-structure	Structure based			
	based models	models			
Arrhenius model	Shaw model	Zhang-Jahanshahi			
		model			
Vogel-Fulcher-	l akatos model	Reddy model			
Tammann model					
Adam-Gibbs	 Irbain model	lida model			
model					
Eyring model	Riboud model	KTH model			
Weymann-	Kalmanovitch-				
Frenkel model	Frank model	Avramov model			
Bockris-Reddy		Quasi-chemical			
model		viscosity model			
AM model	Kondratiev-Jak model	FactSage model			

- Applicable in a limited range of temperatures and compositions;
- Many mathematical fitting model parameters;
- Non self-consistent prediction;
- Lack of an effective description of slag structure.

CaO, mol %	Structural features of the s		
X _{CaO} ≤12	3-dimentional network in the form of [Si _n O _{3n}] ⁻²ⁿ		CaO-SiO ₂ Mass % SiO ₂ <u>40 50 60 70</u>
12 <x<sub>CaO≤33</x<sub>	Anion complexes in the form of $[Si_{n\cdot r}O_{n\cdot(2r+1)}]^{-2n}$		1600°C 1700°C ' ○ Shiraishi × Endell □ Urbain 15 △ Bockris
33 <x<sub>CaO≤50</x<sub>	Ring structure in the form of [Si _n O _{3n}] ⁻²ⁿ		• (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
50 <x<sub>CaO≤67</x<sub>	Chain structure in the form of [Si _n O _{3n+1}] ⁻²⁽ⁿ⁺¹⁾		
67 <x<sub>CaO≤75</x<sub>	Chain structure and monomer [SiO ₄] ⁴⁻ and O ²⁻	, to show of	0.3 0.4 0.5 0.6 x (SiO ₂)
X _{CaO} >75	monomer [SiO ₄] ⁴⁻ and O ²⁻		Source: K. C. Mills, Slag atlas, 1995 , pp. 359.

3 Modelling
Comp. Associate species Structure Viscosity
Partial pressure of oxygen
(for FeO/Fe₂O₃ containing system)
Modified Arrhenius model
In
$$\eta = \ln \eta_{ideal} + \ln \eta_{excess}$$

 $= (\sum X_i \cdot \ln \eta_i) + (\ln \eta_{self-pol.} + \ln \eta_{inter-pol.})$
where: $\ln \eta_i = A_i + B_i/T \longrightarrow$ basic structural units
 $\ln \eta_{self-pol.} = \sum (A_{j,SiO_2} + B_{j,SiO_2}/T) \cdot (X^{n_j}_{SiO_2}) + \sum_k (A_{(Si-Al)_k} + B_{(Si-Al)_k}/T) \cdot (X^{n_k}_{(Si-Al)_k}) + \sum_k (A_{(Si-Al)_m} + B_{(Si-Al)_m}/T) \cdot (X_{(Si-Al)_m} \cdot X^{n_m}_{SiO_2})$

Model performance

• Evaluation formula:
$$\Delta_n = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{(\eta_i)_{cal.} - (\eta_i)_{exp.}}{(\eta_i)_{exp.}} \right|$$

System	No. of data points	Range of viscosities. Pa-s	Δ_{n}
SiO ₂ -Al ₂ O ₃	73	0.03–537.76	0.122
SiO ₂ –MgO	56	0.002–0.59	0.135
Al ₂ O ₃ –CaO	136	0.05–1.30	0.175
SiO ₂ –CaO–MgO	426	0.03–3.85	0.130
SiO ₂ –Na ₂ O–K ₂ O	48	7.59–2951.21	0.208
SiO ₂ -Al ₂ O ₃ -CaO	1717	0.03–1995.26	0.281
SiO ₂ –Al ₂ O ₃ –MgO	357	0.04–94.17	0.217
SiO ₂ -Al ₂ O ₃ -K ₂ O	33	1.02-6165.95	0.263
SiO ₂ –Al ₂ O ₃ –CaO–MgO	1253	0.09–83.10	0.250
$SiO_2 - AI_2O_3 - Na_2O - K_2O$	45	15.49–79432.82	0.212
SiO ₂ –CaO–MgO–Na ₂ O–K ₂ O	29	10.00–23442.29	0.312
SiO ₂ -Al ₂ O ₃ -CaO-MgO-Na ₂ O-K ₂ O	43	10.72–1412.54	0.320

3

3

3

3

*Source: H.J. Hurst, F. Novak, J.H. Patterson, Proc. V International Conference on Molten Slags, Fluxes and Salts, Sydney, Australia, 1997, pp. 873-876

Validation

4

Rotational viscometer:

- Temperature up to 1600°C
- Pressure up to 5 bar
- Measuring range: 1~1000 Pa•s

Crucible

Slag

4 Validation

T, ⁰C

Coal ashes	SiO ₂	Al ₂ O ₃	CaO	MgO	Na ₂ O	K ₂ O	Fe ₂ O ₃
K2-5	0.7180	0.1747	0.0206	0.0239	0.0028	0.0320	0.0280
S1-1	0.6292	0.0185	0.2165	0.0873	0.0153	0.0018	0.0314
S1-2	0.5738	0.1739	0.1612	0.0416	0.0206	0.0071	0.0218
S1-4	0.5777	0.0798	0.1785	0.0709	0.0510	0.0105	0.0316

Application of the model

Conclusion:

- A new structurally-based viscosity model is developed for the fully liquid oxide system SiO₂-Al₂O₃-CaO-MgO-Na₂O-K₂O-FeO-Fe₂O₃ over the whole range of compositions and a broad range of temperatures;
- Good performance is achieved using only one set of model parameters, all having a clear physico-chemical meaning;
- Composition- and temperature-induced viscosity behaviors are well described;
- Extrapolated viscosities to the regions without experimental data are reasonable;
- The model is **self-consistent**.

Outlook:

- Further assessing the model parameters of the FeO/Fe₂O₃ containing systems;
- Extending the model for fully liquid phase by further oxides, such as P₂O₅;
- Extending the model from fully liquid phase to mixtures of liquid and solids;
- Measuring viscosity in unknown region to validate the current model.

Thank you very much for your attention!