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Fuels of modern society
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• Can these chemicals be sustainably converted into the fuels of modern society.
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Solar Fuels

• We are interested in the thermochemical method of fuel production.
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Two step thermochemical redox cycle

MOx
Endothermic−−−−−−−−−→ MOx−δ +

δ

2
O2 Reduction - Trd

MOx−δ + δH2O
Exothermic−−−−−−−−−→ MOx + δH2 Oxidation - Tox

• MOx is a metal oxide. M = (Zn, Sn, Fe, Ce ... etc.)
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Heat engine

Qin TH

Heat
engine

Qout TC

W

O2

H2

H2O
MOx

MOx−δ

Qin Trd

Qout Tox

Reduction

Oxidation

• Efficiency of heat engine η =
W

Qin
, with a maximum of ηCarnot = 1−

TC

TH
.

• Efficiency of the thermochemical cycle is η =
HHVH2

Qin
, with a maximum

ηmax =
HHVH2

∆Hrd
.

• HHVH2
is the higher heating value of hydrogen - Total energy available including

latent heat of vaporisation of steam.
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Cycle properties

• ∆G = ∆H − T∆S. Reaction spontaneous for ∆G < 0.

• Reduction + Oxidation = Water splitting: ∆Grd(T ) + ∆Gox(T ) = ∆Gws(T )
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• ∆Hrd > ∆Hws and ∆Srd > ∆Sws
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CeO2 redox cycle

H2O + CO2

SUN

CeO2 −→ CeO2−δ + δ
2

O2

CeO2−δ + δH2O −→ CeO2 + δ H2

CeO2−δ + δCO2 −→ CeO2 + δCO

CO + H2
O2

Solar reactor

Fischer-Tropsch

Solar collector
Liquid hydrocarbons

(2n+1)H2 + nCO −→
CnH2n+2 + nH2O

Qsolar
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CeO2 redox cycle
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Why Ceria?

• Ceria reduction: ∆H ≈ 440 kJmol−1

Water splitting: ∆H ≈ 250 kJmol−1

CO2 splitting: ∆H ≈ 280 kJmol−1

• Ceria releases oxygen without any phase change (≈ 17 %). [Kümmerele 1999]

• Fuel production has already been demonstrated. [Chueh 2010]

• Ceria is relatively abundant (similar to copper).
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Analytical model

• Ceria can be partially reduced at high temperatures.

CeO2
heat−−−→ CeO2−δ +

δ

2
O2

• δ depends on PO2 and T , δ(PO2 , T ). [Panlenar 1975]

• No phase change implies a simple model.
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Analytical model

CeO2

k
reduction−−−−−−−⇀↽−−−−−−−

k
oxidation

CeO2−δ
+ δ

2
O2 (1)

ka = Aa exp

(
−Ea
RT

)
δ =

[VÖ]

[Ce]

• Set a maximum value for δ, say δmax.

Rate = Reduction − Oxidation

dδ

dt
= (δmax − δ)Ard exp

(
−Erd

RT

)
− δP n

O2
Aox exp

(
−Eox

RT

)
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Model schematic
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Equilibrium

• At equilibrium
dδ

dt
= 0

(
δ

δmax − δ

)
=
Ard

Aox
P−n
O2

exp

(
−∆E

RT

)
∆E = Erd − Eox

Rearrange to get

log

(
δ

δmax − δ

)
= −n log(PO2 ) + log

(
Ard

Aox
exp

(
−∆E

RT

))

• Plots of log(δ) vs. log(PO2
) are common in the literature.
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Equilibrium data

log

(
δ
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= −n log(PO2
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• From the literature we have δ(PO2 , T ) [Panlenar 1975, Zinkevich 2006]

• The slope of each line is the parameter n.
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Model vs. literature equilibrium

(
δ

0.35− δ

)
= 106000× P −0.22

O2
exp

(
−195.6 [kJ mol−1]

RT

)
(2)

δ vs. Temperature
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• Isobaric plots of model

• Points are literature
equilibrium data

• ∆E = 195.6± 1.2 kJmol−1

Ard

Aox
= 106000 ± 10000 Pan

δmax = 0.35
n = 0.22 ± 0.013
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Mixed oxides based on ceria
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Thermodynamics

• Simple model which predicts δ(PO2
, T ), and naturally PO2

(δ, T ) also.

• Reduction + Oxidation = Water splitting: ∆Grd(T ) + ∆Gox(T ) = ∆Gws(T )

• ∆Grd(T ) = −RT ln(PO2
(δ, T ))

• ∆Gws(T ) is also known.

• The other thermodynamic properties for the reactions are known (Cp, ∆H... etc).

• Have all the information for a full thermodynamic analysis.
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Heating efficiency

CeO2−δox
heat= ∆Hrd−−−−−−−−−→ CeO2−δrd +

δrd − δox

2
O2 Trd PO2

CeO2−δrd + (δrd − δox)H2O −→ CeO2−δox + (δrd − δox)H2 Tox H2O

∆T = Trd − Tox ∆δeq = δrd − δox

• ηmax =
HHVH2

∆Hrd
. For ceria, ηmax ≈ 67%.

• Additionally the temperature of ceria must be cycled.

Qrd =

∫ δrd

δox

∆Hrd(δ)dδ QCeO2 =

∫ Trd

Tox

CpCeO2
(T )dT [J mol−1]

ηheat =
∆δeqHHVH2

Qrd +QCeO2

, (3)

Thermodynamics Heating July 1, 2015 17 / 27



Heating efficiency

CeO2−δox
heat= ∆Hrd−−−−−−−−−→ CeO2−δrd +

δrd − δox

2
O2 Trd PO2

CeO2−δrd + (δrd − δox)H2O −→ CeO2−δox + (δrd − δox)H2 Tox H2O

∆T = Trd − Tox ∆δeq = δrd − δox

• ηmax =
HHVH2

∆Hrd
. For ceria, ηmax ≈ 67%.

• Additionally the temperature of ceria must be cycled.

Qrd =

∫ δrd

δox

∆Hrd(δ)dδ QCeO2 =

∫ Trd

Tox

CpCeO2
(T )dT [J mol−1]

ηheat =
∆δeqHHVH2

Qrd +QCeO2

, (3)

Thermodynamics Heating July 1, 2015 17 / 27



Heating efficiency

CeO2−δox
heat= ∆Hrd−−−−−−−−−→ CeO2−δrd +

δrd − δox

2
O2 Trd PO2

CeO2−δrd + (δrd − δox)H2O −→ CeO2−δox + (δrd − δox)H2 Tox H2O

∆T = Trd − Tox ∆δeq = δrd − δox

• ηmax =
HHVH2

∆Hrd
. For ceria, ηmax ≈ 67%.

• Additionally the temperature of ceria must be cycled.

Qrd =

∫ δrd

δox

∆Hrd(δ)dδ QCeO2 =

∫ Trd

Tox

CpCeO2
(T )dT [J mol−1]

ηheat =
∆δeqHHVH2

Qrd +QCeO2

, (3)

Thermodynamics Heating July 1, 2015 17 / 27



Heating efficiency

ηheat =
∆δeqHHVH2

Qrd +QCeO2

,

• Trd set to 1500 ◦C. Can increase ∆δeq by reducing PO2 .
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• Decreasing PO2 comes with an energy cost.
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Fuel production

Qox

Qrd

QCeO2

N2

N2

Heat Exch.

QN2

Qgas

H2 H2O

Reactor

N2 Prod.

N2+O2

N2+O2

Trd P

Tox Pamb

Tamb Pamb

ox

rd

ηfuel =
ηplant∆δeqHHVH2

Qrd +QCeO2
+QN2

+Qgas +Qox
.

• Energy stored in fuel ∆δeqHHVH2 . Yield by the higher heating value of the fuel.
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Fuel production
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Fuel production
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ηfuel =
ηplant∆δeqHHVH2

Qrd +QCeO2
+QN2

+Qgas +Qox
.

• Heat the oxidiser Qox
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Ambient fuel production

ηfuel =
ηplant∆δeqHHVH2

Qrd +QCeO2
+QN2

+Qgas +Qox
. (4)

Fuel production efficiency with ∆T = 500 ◦C.
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• ηfuel can be maximised w.r.t. ∆T and PO2 . Maximum is 4.5%.

• At maximum ∆δeq is very small.
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Fuel production pumping

Qox

Qrd

QCeO2

Heat Exch.

Qgas

Qpmp

H2 H2O

Reactor
Pump

O2

O2

Trd P

Tox Pamb
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ox

rd

ηfuel =
ηplant∆δeqHHVH2

Qrd +QCeO2 +Qox +Qgas +Qpmp
.

• Qgas is now a small quantity of released heat.
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Fuel production: pumping

Qox

Qrd

QCeO2

Heat Exch.

Qgas

Qpmp

H2 H2O

Reactor
Pump

O2

O2

Trd P

Tox Pamb

Tamb Pamb

ox

rd

ηfuel =
ηplant∆δeqHHVH2

Qrd +QCeO2 +Qox +Qgas +Qpmp
.

• Qpmp is the heat energy required to pump the oxygen.
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Pumping efficiency

• The efficiency of vacuum pumps decreases with pressure.

Efficiency of some Bosch pumps
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Analytical

• Current vacuum pumps not designed for efficiency.

• Pumping efficiency, ηpmp(P ) = 0.4P 0.5437
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Reduced reduction pressure

ηfuel =
ηplant∆δeqHHVH2

Qrd +QCeO2
+Qgas +Qox +Qpmp

. (5)

Efficiency with ∆T = 500 ◦C.

T rd = 1600
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• Dashed line P = PO2
, which means QN2

= Qgas = 0
• ηfuel can be maximised w.r.t. ∆T and P . Maximum is 7.5%.
• ∆δeq improved compared to ambient operation.
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Ceria heat recuperation

• Using the hot ceria from the reduction step to heat the relatively cool ceria from
the oxidation step is a popular idea. [Miller 2008, Lapp 2013]

CSP

N2

N2+O2

H2O

H2

Reduction

Oxidation

Recuperation Insulation

Ceria

• Why bother? Instead use the heat as high temperature process heat for Qpmp

and Qox.
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Ceria heat recuperation

• Assume the hot ceria can be used to decrease any of the other heat requirements
with effectivness εsld = 0.60.
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• Sharp peak occurs when Qpmp +Qox becomes larger than the available recycled
process heat.

• Maximising efficiency w.r.t. ∆T and P gives ηfuel ≈ 11 %
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Practicality of the ceria cycle.

• Amount of ceria needed to produce a mole of fuel is
1

∆δeq
.

ṅCeO2
=

Q̇out

∆δeqHHVH2

[mol s−1]
∂mCeO2

∂Q̇out

= tcycM(CeO2)
∂ṅCeO2

∂Q̇out

[kg kW−1]

Assuming tcyc = 10 min, Trd = 1500 ◦C and εsld = 0.6

• Optimised ambient pressure, ηfuel ≈ 7.5 %,
∂mCeO2

∂Q̇out
≈ 25 kg kW−1. To power a

Toyota Prius need 3750 kg ................

• Optimised pumped system, ηfuel ≈ 11 %,
∂mCeO2

∂Q̇out
≈ 13 kg kW−1.

• Very efficient pump ηpmp = 0.5P 0.27 (Transonic axial flow), ηfuel ≈ 18 %,
∂mCeO2

∂Q̇out
≈ 7 kg kW−1.

• Solar electrolysis is 13− 20 % efficient.
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Thermodynamic conclusions

• Thermodynamic efficiency for the ceria cycle was found to be quite low (≈ 11 %).

• Isothermal cycles will inevitably have very low efficiency - less than 2%.

• Improvement of vacuum pumps may be vital for success of the ceria cycle.

• Sensible to develop a method of converting heat stored in ceria to process heat.

• Doping Ceria or producing new materials could make a large difference to both
efficiency and practicality
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