

The ALLEE project – Linking thermodynamics and diffusion with materials properties

V. Mohles

GTT user meeting, Herzogenrath, 2. - 4. 7. 2014

::: ClaNG model

::: ALLEE project

Through process modelling

Homogenisation AA3104

i/7

Statistical precipitation: ClaNG

generalized ansatz of Lifshitz, Slyozov; Wagner

nucleation rate dN/dt

general temperature curve T(t) relevant for application

Statistical precipitation: ClaNG

several specific phases I, II, III, ... considered

Continuity / material conservation

$$\frac{\partial f(r,t)}{\partial t} + \frac{\partial}{\partial r} \left(\dot{r} \cdot f(r,t) \right) = \dot{N}(t)$$
$$\dot{r} \cdot \frac{\partial f(r,t)}{\partial r} + \frac{\partial \dot{r}}{\partial r} \cdot f(r,t)$$

- solved numerically with formulations for nucleation rate \dot{N}
 - and growth law \dot{r}

Nucleation

nucleation rate : $\dot{N}_{\text{total}} = \dot{N}_{\text{hom}} + \dot{N}_{\text{het}}$

$$\dot{N}(t) = N_0 \beta \exp\left(-\frac{\Delta G(r_c)}{kT}\right)$$

 N_0 - site density

- $N_{0,\text{hom}}$: all atoms that can form precipitates $N_{0,\text{het}}$: $\rho^{3/2}/2$ with ρ : dislocation density
- β atomic attachment rate $\beta = Min(4\pi r_c^2 D(T) c(t) \lambda^{-4})$
 - \boldsymbol{D} bulk/pipe diffusion coefficient
 - $\lambda\,$ lattice parameter

Nucleation

nucleation rate : $\dot{N}_{\text{total}} = \dot{N}_{\text{hom}} + \dot{N}_{\text{het}}$

$$\dot{N}(t) = N_0 \beta \exp\left(-\frac{\Delta G(r_c)}{kT}\right) \cdot Z$$

 N_0 - site density

- $N_{0,\rm hom}$: all atoms that can form precipitates $N_{0,\rm het}$: $ho^{3/2}/2$ with ho: dislocation density
- β atomic attachment rate $\beta = Min(4\pi r_c^2 D(T) c(t) \lambda^{-4})$
 - \boldsymbol{D} bulk/pipe diffusion coefficient
 - $\lambda\,$ lattice parameter

Z - Zeldovich non-equilibrium factor Z

$$Z = \sqrt{\frac{\Delta G(r_c)}{3\pi kT \cdot (n_{\text{in nucleus}}^{\text{atoms}})^2}}$$

Nucleation

nucleation rate :
$$\dot{N}_{\text{total}} = \dot{N}_{\text{hom}} + \dot{N}_{\text{het}}$$

 $\dot{N}(t) = N_0 \ \beta \ \exp\left(-\frac{\Delta G(r_c)}{kT}\right) \cdot Z \cdot \exp\left(-\frac{\tau}{\Delta t}\right)$

- N_0 site density
 - $N_{0,\mathrm{hom}}$: all atoms that can form precipitates $N_{0,\mathrm{het}}$: $ho^{3/2}/2$ with ho: dislocation density
- β atomic attachment rate $\beta = Min(4\pi r_c^2 D(T) c(t) \lambda^{-4})$
 - \boldsymbol{D} bulk/pipe diffusion coefficient
 - $\lambda\,$ lattice parameter
- Z Zeldovich non-equilibrium factor Z

$$Z = \sqrt{\frac{\Delta G(r_c)}{3\pi kT \cdot (n_{\text{in nucleus}}^{\text{atoms}})^2}}$$

- $\tau\,$ incubation time to attain stable nucleation
- Δt time after phase reaches stability

$$\left(c^{\beta}-c^{\alpha}\right)\,dr = j\,\,dt$$

 c^{α} = atom density in matrix α

 c^{β} = atom density in phase β

j = atoms current density

$$4\pi r^2 \left(c^\beta - c(r) \right) \frac{dr}{dt} = J$$

 c^{α} = atom density in matrix α

 c^{β} = atom density in phase β

J = atom current to be provided

atom current provided:

$$J = 4\pi R^2 D \left. \frac{dc}{dR} \right|_R \implies \text{Zener's growth law} \quad \frac{dr}{dt} = \frac{D}{r} \frac{c^{\alpha} - c(r)}{c^{\beta} - c(r)}$$

Gibbs-Thomson concentration at the interface:

$$c_{i}^{\alpha/\beta}(r) = c_{i}^{\alpha/\beta}(\infty) \cdot \exp\left(\frac{2\sigma V_{a}}{r \cdot kT}\right)$$

$$\frac{2\sigma V_{a}}{r} = kT \ln\left(\frac{c_{i}^{\alpha/\beta}(r)}{c_{i}^{\alpha/\beta}(r \to \infty)}\right)$$
Gibbs energy
enhancement
of the particle
Gibbs energy
enhancement
in the matrix

$$\frac{2\sigma V_a}{r} = \sum_i c_i^\beta \cdot kT \ln\left(\frac{c_i^{\alpha/\beta}(r)}{c_i^{\alpha/\beta}(r \to \infty)}\right) \\ \frac{2\sigma V_a}{r} = \sum_i c_i^\beta \cdot kT \ln\left(\frac{1 - f(r)\frac{c_i^\beta}{c_i^\alpha}}{1 - f(r)}\right) \\ \frac{2\sigma V_a}{r} = \sum_i c_i^\beta \cdot kT \ln\left(\frac{1 - f(r)\frac{c_i^\beta}{c_i^\alpha}}{1 - f(r)}\right) \\ \frac{2\sigma V_a}{r} = \sum_i c_i^\beta \cdot kT \ln\left(\frac{1 - f(r)\frac{c_i^\beta}{c_i^\alpha}}{1 - f(r)}\right) \\ \frac{2\sigma V_a}{r} = \sum_i c_i^\beta \cdot kT \ln\left(\frac{1 - f(r)\frac{c_i^\beta}{c_i^\alpha}}{1 - f(r)}\right) \\ \frac{2\sigma V_a}{r} = \sum_i c_i^\beta \cdot kT \ln\left(\frac{1 - f(r)\frac{c_i^\beta}{c_i^\alpha}}{1 - f(r)}\right) \\ \frac{2\sigma V_a}{r} = \sum_i c_i^\beta \cdot kT \ln\left(\frac{1 - f(r)\frac{c_i^\beta}{c_i^\alpha}}{1 - f(r)}\right) \\ \frac{2\sigma V_a}{r} = \sum_i c_i^\beta \cdot kT \ln\left(\frac{1 - f(r)\frac{c_i^\beta}{c_i^\alpha}}{1 - f(r)}\right) \\ \frac{2\sigma V_a}{r} = \sum_i c_i^\beta \cdot kT \ln\left(\frac{1 - f(r)\frac{c_i^\beta}{c_i^\alpha}}{1 - f(r)}\right) \\ \frac{2\sigma V_a}{r} = \sum_i c_i^\beta \cdot kT \ln\left(\frac{1 - f(r)\frac{c_i^\beta}{c_i^\alpha}}{1 - f(r)}\right) \\ \frac{2\sigma V_a}{r} = \sum_i c_i^\beta \cdot kT \ln\left(\frac{1 - f(r)\frac{c_i^\beta}{c_i^\alpha}}{1 - f(r)}\right) \\ \frac{2\sigma V_a}{r} = \sum_i c_i^\beta \cdot kT \ln\left(\frac{1 - f(r)\frac{c_i^\beta}{c_i^\alpha}}{1 - f(r)}\right) \\ \frac{2\sigma V_a}{r} = \sum_i c_i^\beta \cdot kT \ln\left(\frac{1 - f(r)\frac{c_i^\beta}{c_i^\alpha}}{1 - f(r)}\right) \\ \frac{2\sigma V_a}{r} = \sum_i c_i^\beta \cdot kT \ln\left(\frac{1 - f(r)\frac{c_i^\beta}{c_i^\beta}}{1 - f(r)\frac{c_i^\beta}{c_i^\beta}}\right)$$

$$\frac{2\sigma V_a}{r} + \Delta g_r = \sum_i c_i^{\beta} \cdot kT \ln \left(\frac{1 - f(r) \frac{c_i^{\alpha}}{c_i^{\alpha}}}{1 - f(r)} \right) \qquad \text{fitted function: } h = 1 - (r_c / r)^a$$
numerically resolved for $f(r)$: $f(r) = f_{\max} \cdot h(r / r_c)$ $f_{\max} = \frac{c_i^{\alpha} - c_i^{\alpha/\beta}(\infty)}{c_i^{\beta} - c_i^{\alpha/\beta}(\infty)}$
from mass conservation: $f(r) = \frac{c_i^{\alpha} - c_i^{\alpha/\beta}(r)}{c_i^{\beta} - c_i^{\alpha/\beta}(r)}$
compare with Zener's law: $\frac{dr}{dt} = \frac{c^{\alpha} - c^{\alpha/\beta}(r)}{c^{\beta} - c^{\alpha/\beta}(r)} \frac{D}{r}$
 \Rightarrow growth law: $\frac{dr}{dt} = \frac{D}{r} f(r) = \frac{D}{r} f_{\max} h(r / r_c)$
with $D = Min \left(D_i^{bulk}(T) + (\rho / \rho_0) D_i^{pipe}(T) \right)$

ClaNG+, AA5182: calibration

ClaNG+, AA5182: nucleation

ClaNG+, AA5182 calibrated; AA3104 predictions

::: ClaNG model

::: ALLEE project

BMBF project: ALLEE

BMBF: Support initiative "Zukunftsfähige Stromnetze"

topics: transmission and distribution techniques

⇒ "Langzeitstabile Aluminiumlegierungen für elektrische Verbindungen"

44 GW of wind energy produced in the north to be transferred to the energy hungry south

Copper: $16.7 \cdot 10^{-9} \Omega m (@RT)$

Aluminium: $26.5 \cdot 10^{-9} \Omega m$ (@RT) but cheaper known problem: creep resistance

requested: application temperature 140°C period of use: 50 a

Abb. 1: Onshore-Windleistung [Fraunhofer IWES 2011] und geplante Energieautobahnen [www.netzentwicklungsplan.de]

"Langzeitstabile Aluminiumlegierungen für elektrische Verbindungen"

management:	Prof. DrIng. O. Kessler Lehrstuhl für Werkstofftechnik, Universität Rostock
partners:	Prof. DrIng. Thomas Schoenemann Lehrst. f. Hochspannungs- u. Hochstromtechnik, Universität Rostock
	Prof. DrIng. Steffen Großmann Inst. f. Elektr. Energieversorgung u. Hochspannungstechnik, TU Dresden
	PD. Dr. Volker Mohles Institut für Metallkunde und Metallphysik, RWTH Aachen University
	Prof. Dr. Jürgen Hirsch Hydro Aluminium Rolled Products GmbH, F&E, Bonn
	Prof. Dr. Klaus Hack Ges. für Technische Thermochemie und –physik mbH, Herzogenrath
start (?):	September 2014

Requirements for ALLEE alloys

ainus	sion coefficient	in Al, s	olubility at	140°C	
	·	L	\checkmark		
Element		D _x / m²/s	c _{max} / wt%	ρ _x (1wt%) / (10 ⁻⁹ Ωm)	ρ _{Al} +ρ _x (max%
AI		1,67.10 ⁻²²		40 (100%, 140°C)	
Cr	Dispers. bildend	1,86·10 ⁻³³	<< 1% 0.3% übers.	42	53 (0.3wt%)
Cu		4,12.10 ⁻²²	<< 1%	3,0	40
Fe	Dispers. bildend	3,38·10 ⁻²⁶	<< 1%	32	40
Mg		3,99·10 ⁻²¹	2%	5,5	51 (2wt%)
Mn	Dispers. bildend	1,91.10 ⁻²⁹	<< 1% 0.3% übers.	38 / 36	51 (0.3wt%)
Ni	Dispers. bildend	1,51.10 ⁻²²	<< 1%		
Si		7,48 ·10 ⁻²¹	<< 1%	6,5	40
Ti		1,55.10 ⁻³⁴	<< 1%	31	40
Zr	Dispers. bildend	1,80.10-32	<< 1%		

Requirements for ALLEE alloys

Requirements for ALLEE alloys

applied so far:

stock alloys (AA1xxx) optimized for mechanical applications/purposes selected for low electrical resistivity

future requirements:

increased temperature: $90^{\circ}...110^{\circ}C \rightarrow 140^{\circ}C$ increased currents / higher energy/power density / compact design increased life time / reduced down time (maintenance) increased strength to withstand electromagnetic forces (short circuit!) extreme environmental conditions (e.g. offshore)

potential for optimized alloys:

large grains etc.	-	dislocations, grain boundaries not stable
precipitates!	-	stable phases, aging slowly at 140°C
	-	but forming fast enough during production
	\rightarrow	selection of ideal alloying elements and contents
	-	production route should ensure full precipitation
	\rightarrow	optimization of the processing route

project structure

specification:	operating conditions, definition of test methods			
alloy development:	alloy selection (initial and iterations) thermodynamic calculations (GTT) precipitation modelling : ClaNG (IMM)			
alloy production:	primary shaping, homogenization, forming (Hydro)			
characterization:	microstructure, calorimetry (LWT), mechanical properties electrical properties			
long term experiments:	without current (HHT), with current (IEEH)			
modelling an simulation:	material model for creep (IMM) system model (IEEH, LWT) ClaNG database extension (GTT)			
evaluation:	including norming concept			

Alloy selection

Element		D _x / m²/s	c _{max} / wt%	ρ _x (1wt%) / (10 ⁻⁹ Ωm)	ρ _{Al} +ρ _x (max%)
AI		1,67·10 ⁻²²		40 (100%, 140°C)	
Cr	Dispers. bildend	1,86·10 ⁻³³	<< 1% 0.3% übers.	42	53 (0.3wt%)
Cu		4,12·10 ⁻²²	<< 1%	3,0	40
Fe	Dispers. bildend	3,38·10 ⁻²⁶	<< 1%	32	40
Mg		3,99·10 ⁻²¹	2%	5,5	51 (2wt%)
Mn	Dispers. bildend	1,91·10 ⁻²⁹	<< 1% 0.3% übers.	38 / 36	51 (0.3wt%)
Ni	Dispers. bildend	1,51·10 ⁻²²	<< 1%		
Si		7,48 ·10 ⁻²¹	<< 1%	6,5	40
Ti		1,55·10 ⁻³⁴	<< 1%	31	40
Zr	Dispers. bildend	1,80·10 ⁻³²	<< 1%		

- \rightarrow 1) start with good element candidates within the validated database
 - 2) look for better candidates
 - stability / resistivity
 - production feasibillity, material and production cost, ...
 - 3) extend database (GTT)
 - 4) ClaNG simulations for application and production conditions

- ::: ClaNG can deliver valuable information for other models:
 - recrystallisation
 - particle / solute strengthening \rightarrow creep
 - texture predictions
 - resistivity
- ::: information about Δg_T and equilibrium solute concentrations from database,
 - to be extended towards other elements / phases
 - planned: database for interface energies
- ::: the ALLEE project will be a new big playground to utilize ClaNG

