Modelling Internal Corrosion of High Temperature Alloys

Ulrich Krupp
Acknowledgment

Katrin Jahns
Institute of Materials Design and Structural Integrity

Martin Landwehr, Prof. Dr. Jürgen Wübbelmann
Institute of Computer Engineering

University of Applied Sciences Osnabrück, Germany

Dr. S.-Y. Chang, Dr. Robert Orosz, Dr. Vicente Trindade,
Prof. H.-J. Christ

University of Siegen, Germany

Financial Support:
German Science Foundation DFG
German Ministry of Education and Research (BMBF),
European Fonds for Regional Development (EFRE)
GTT Technologies, Herzogenrath, Germany
Outline

- What is Internal Corrosion?
- Wagner's Theory of Internal Oxidation
- Limitations of the Classical Theory
- Numerical Treatment of Internal Oxidation and Nitridation
 - Finite Difference
 - Cellular Automata
What is Internal Corrosion?

high-temperature corrosion: superficial scale + internal oxidation

selective oxidation

gas phase (O,N,S,C..)

metal oxide (AO) $D_{O/A}$

internal oxide (BO) D_O

alloy AB

metal oxide (BO) D_O

alloy AB
Transition from Internal to External Oxidation
Oxidation of Ni-Cr Alloys (100h, 1000°C, air)

depends on: $c_{Cr}/D_{Cr}/T$
Material Degradation by Internal Corrosion

gas and steam turbines, heat exchangers, chemical reactors, exhaust systems, metallurgy, heat treatment …

(Natural Gas Burner Tube, alloy 601)

internal nitridation (AIN)

500µm

superficial Cr₂O₃

internal Al₂O₃

internal AlN

30µm
Material Degradation during Cyclic Oxidation at 1100°C

- Al₂O₃ spallation
- Al depletion
- Transition to non-protective NiO
- Internal Al₂O₃/Cr₂O₃
- Internal AlN/TiN
- Cracks

Wedge-Shaped Specimen CMSX-4 at 1100°C
Carl Wagner's Theory of Internal Oxidation

Depth of the Internal Precipitation Zone ξ

$$\xi^2 = \frac{2c_O^s D_O}{Vc_B^0} t \quad \text{for} \quad \frac{D_B}{D_O} \ll \frac{c_O^s}{c_B^0} \ll 1$$

C. Wagner, Z. Elektrochemie, 21 (1959) 773
Carl Wagner's Theory of Internal Oxidation

Diffusion of O and B:

\[c_O = c_O^0 \left(1 - \frac{\text{erf}(x/2\sqrt{D_O t})}{\text{erf} \gamma}\right) \]

\[c_B = c_B^0 \left(1 - \frac{\text{erfc}(x/2\sqrt{D_B t})}{\text{erfc} \left(\gamma \sqrt{D_O / D_B}\right)}\right) \]

Mass Balance at \(\xi \):

\[-D_O \left(\frac{\partial c_O}{\partial x}\right)_{x=\xi-\varepsilon} = vD_B \left(\frac{\partial c_B}{\partial x}\right)_{x=\xi+\varepsilon} \]

Depth of the Internal Precipitation Zone \(\xi \)

\[\xi^2 = \pi \frac{D_O^2}{D_B} \left(\frac{c_O^s}{v c_B^0}\right)^2 t \quad \text{for} \quad \gamma \ll 1 \quad \gamma \sqrt{\frac{D_O}{D_B}} \ll 1 \]

C. Wagner, Z. Elektrochemie, 21 (1959) 773
Carl Wagner's Theory of Internal Oxidation

Mass Balance:
Mole fraction $BO_v \leftrightarrow \text{B flux to reaction front}$

$$\frac{fA d\xi}{V_m} = \left[\frac{AD_B}{V_m} \frac{\partial c_B}{\partial x}\right] dt$$

Transition from Internal to External Oxidation

$$c_B^0 > \pi \left[\frac{\pi g^*}{2V} c_O^s \frac{D_O V_m}{D_B V_{Ox}}\right]$$

with g^*: crit. volume fraction of oxide

C. Wagner, Z. Elektrochemie, 21 (1959) 773
Limitations of Wagner's Analytical Approach

One type of precipitates of high thermodynamic stability (solubility product \(K_{SP} = N_B N_0^\gamma \approx 0 \))

Constant boundary conditions - no changes in temperature, gas composition etc. possible

Effective diffusivity - through complex microstructure, e.g., \(D_{GB} > D_{bulk} \)

One-dimensional - nucleation and growth kinetics / changes in the diffusion path are neglected
Nucleation and Growth of Internal Precipitates
(TiN and AlN in NiCr20Al2Ti2, 1000°C, 150h, N₂)

Energy Balance:
interface energy γ
free energy change ΔG
strain energy ΔG_s
(defect site annihilation energy)

$$\Delta G = V(\Delta G_v + \Delta G_s) + \sum_i A_i \gamma_i$$

Supersaturation

G. Böhm, M. Kahlweit, Acta Met., 12 (1964) 641
Finite-Difference Treatment of Diffusion

\[\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} \]

\[\left(\frac{\partial c}{\partial t} \right)_{x,t} \approx \frac{c(x, t + \Delta t) - c(x, t)}{\Delta t} \]

\[\left(\frac{\partial^2 c}{\partial x^2} \right)_{x,t} \approx \frac{c(x + \Delta x, t) - 2c(x, t) + c(x - \Delta x, t)}{\Delta x^2} \]

\[c_i(x, t + \Delta t) = c(x, t) + \frac{D\Delta t}{\Delta x^2} \left[c(x - \Delta x, t) - 2c(x, t) + c(x + \Delta x, t) \right] \]
Finite-Difference Treatment of Diffusion

$$c(x, t + \Delta t) = c(x, t) + \frac{D\Delta t}{\Delta x^2} \left[c(x - \Delta x, t) - 2c(x, t) + c(x + \Delta x, t) \right]$$

computational thermodynamics
ChemApp + system data
(GTT technologies)

$$G = \sum_{j=1}^{m} c_j \left(G_{j,\text{pure}} + G_{j,\text{id}} + G_{j,\text{non-id}} \right)$$

= min !
2D Finite-Difference Treatment of Diffusion
(Crank Nicolson implicit approach)

\[
D = f(x, y)
\]
(e.g. PVM)

bulk and gb diffusion

Parallelization
(e.g. PVM, GPU/CUDA)

ChemApp / system
data base initialisation
distributed equilibrium
calculations

C – Main program
FD diffusion calculation
user interface

Finite-Difference Simulation of Internal Precipitation of Cr-Nitrides of Moderate Stability (NiCr20, 800°C, N₂)
Oxidation of Low-Cr Steels (X60)
(1.43wt% Cr, 550°C, air)
2D Simulation of Internal Oxidation

Fe₃O₄/FeCr₂O₄
inner oxide scale thickness
grain boundaries

FeCr₂O₄
Inner Oxide-Scale Growth (X60)

(1.43wt% Cr, 550°C, air)
The Cellular Automata Approach

Dividing Space into Lattice

Defining a Neighbourhood
(von Neumann, Moore)

Defining State Variables
(e.g.: 0,1)

Defining Transition Rules
(applied simultaneously to all cells)

The Cellular Automata Approach (Chopard and Droz)

Probabilities

\[p_1 = p_3 = p \]
\[p_0 + 2p + p_2 = 1 \]

Diffusion Coefficient

\[
D_N = \frac{\lambda^2}{\tau} \left(\frac{1}{4(p + p_2)} - \frac{1}{4} \right) = \frac{\lambda^2}{\tau} \left(\frac{p + p_0}{4(1 - p - p_0)} \right)
\]

with

\[\lambda = \frac{X}{n_x}, \tau = \frac{T}{n_t} \]

Chopard and Droz, Cellular Automata Modeling of Physical Problems, Cambridge Univ. Press 1998
Diffusion Profile (Chopard and Droz)

The analytical solution for the diffusion profile is given by:

$$ c(x,t) = c_s \left(1 - \text{erf} \left(\frac{x}{2 \sqrt{D t}} \right) \right) $$

where $c(x,t)$ is the concentration at location x and time t, c_s is the initial concentration, D is the diffusion coefficient, and t is time.
The Cellular Automata Approach for Internal Precipitation (Zhou and Wei)

Initialization

Diffusion: N stepwise to the right
B every 20th iteration to the left

Transition: B+N=>BN:
(Implementation ChemApp possible)

solvent: inert (I)
solute: active element (B)
nitride (BN)
nitrogen (N)
The Cellular Automata Approach
for Internal Precipitation (Zhou and Wei)

Stable state (AN)

Transition p_T:

Transition p_T^r:

Zhou and Wei, Scripta Mater., 37 (1997) 1483
Internal Precipitation (Zhou and Wei) + N- Diffusion (Chopard and Droz)

(location y) (arbitrary units)

512 x 512 cells
20000 iterations

(location x) (arbitrary units)

512 x 512 cells
1500 iterations

(increased B counter diffusion)
Precipitation + N Diffusion (Chopard and Droz) + B Diffusion in the Internal Precipitation Zone

- solvent (inert)
- active element B
- nitride (BN)

Nitride sink (min 5 nitrides within R=5 cells)
Precipitation + B Diffusion in the Internal Precipitation Zone – Concentration Profile

concentration (cells / 512cells)

Figure: Concentration profile of nitride BN and active element B. The concentration is plotted against location x (10^-6 m). The nitride BN shows a higher concentration compared to the active element B.
Precipitation + B Diffusion in the Internal Precipitation Zone – Penetration Depth

penetration depth ξ [µm]

(Ni-20Cr-6Ti 1000°C, N_2)

incubation time: non-stable precipitates

square root of exp. time [$h^{-0.5}$]
Grain boundary diffusion

\[D_{GB} > D_{bulk} \]

512 x 512 cells
3000 iterations
\(T_{tot} = 100h, \ T = 800\, ^\circ C \)
Conclusions and Future Aspects

- Classical Wagner theory is limited to special scenarios
- Finite Difference: easy combination with ChemApp
- Cellular Automata:
 - nucleation and growth
 - 3D effects: various diffusion paths (e.g., GB/bulk diffusion)
- Problems to be solved:
 - combination of small and large concentrations
 - implementation of ChemApp

more info: u.krupp@hs-osnabrueck.de