

GTT Annual Workshop and User Meeting 2-4 July 2014

Modelling Internal Corrosion of High Temperature Alloys

Ulrich Krupp

Hochschule Osnabrück University of Applied Sciences

Institute of Materials Design and Structural Integrity

Acknowledgment

Katrin Jahns Institute of Materials Design and Structural Integrity

Martin Landwehr, Prof. Dr. Jürgen Wübbelmann Institute of Computer Engineering

University of Applied Sciences Osnabrück, Germany

Dr. S.-Y. Chang, Dr. Robert Orosz, Dr. Vicente Trindade, Prof. H.-J. Christ

University of Siegen, Germany

Financial Support:

German Science Foundation DFG German Ministry of Education and Research (BMBF), European Fonds for Regional Development (EFRE) GTT Technologies, Herzogenrath, Germany

Outline

- What is Internal Corrosion?
- Wagner's Theory of Internal Oxidation
- Limitations of the Classical Theory
- Numerical Treatment of Internal Oxidation and Nitridation
 - Finite Difference
 - Cellular Automata

What is Internal Corrosion?

high-temperature corrosion: superficial scale + internal oxidation

Transition from Internal to External Oxidation Oxidation of Ni-Cr Alloys (100h, 1000°C, air)

Material Degradation by Internal Corrosion

gas and steam turbines, heat exchangers, chemical reactors, exhaust systems, metallurgy, heat treatment ...

Material Degradation during Cyclic Oxidation at 1100°C

Wedge-Shaped Specimen CMSX-4 at 1100°C

Carl Wagner's Theory of Internal Oxidation

Carl W. Wagner (1901-1977)

Depth of the Internal Precipitation Zone ξ

$$f^{2} = \frac{2c_{\rm O}^{\rm s}D_{\rm O}}{\nu c_{\rm B}^{\rm 0}}t$$
 for $D_{\rm B}/D_{\rm O} << c_{\rm O}^{\rm s}/c_{\rm B}^{\rm 0} << 1$

Carl Wagner's Theory of Internal Oxidation

Depth of the Internal Precipitation Zone ξ

$$\xi^{2} = \pi \frac{D_{\rm O}^{2}}{D_{\rm B}} \left(\frac{c_{\rm O}^{\rm s}}{v c_{\rm B}^{\rm 0}} \right)^{2} t \quad \text{for} \quad \gamma <<1 \quad \gamma \sqrt{\frac{D_{\rm O}}{D_{\rm B}}} <<1$$

C. Wagner, Z. Elektrochemie, 21 (1959) 773

Carl Wagner's Theory of Internal Oxidation

Mass Balance: Mole fraction $BO_v \Leftrightarrow$ B flux to reaction front

$$\frac{fAd\xi}{V_m} = \left[\frac{AD_{\rm B}}{V_m}\frac{\partial c_{\rm B}}{\partial x}\right]dt$$

Transition from Internal to External Oxidation

$$c_{\rm B}^0 > \pi \left[\frac{\pi g^*}{2\nu} c_{\rm O}^{\rm s} \frac{D_{\rm O} V_{\rm m}}{D_{\rm B} V_{\rm Ox}} \right]$$
 with g^* : crit. volume fraction of oxide

Limitations of Wagner's Analytical Approach

One type of precipitates of high thermodynamic stability (solubility product $K_{SP} = N_B N_O^{\nu} \approx 0$)

Constant boundary conditions - no changes in temperature, gas composition etc. possible

Effective diffusivity - through complex microstructure, e.g., $D_{GB} > D_{bulk}$

One-dimensional - nucleation and growth kinetics / changes in the diffusion path are neglected

Nucleation and Growth of Internal Precipitates (TiN and AIN in NiCr20Al2Ti2, 1000°C, 150h, N₂)

Energy Balance: interface energy γ free energy change ΔG strain energy ΔG s (defect site annilhilation energy)

$$\Delta G = V(\Delta G_V + \Delta G_s) + \sum_i A_i \gamma_i$$

Supersaturation

D. J. Young: High Temperature Oxidation and Corrosion of Metals, Elsevier 2008

G. Böhm, M. Kahlweit, Acta Met., 12 (1964) 641

Finite-Difference Treatment of Diffusion

Finite-Difference Treatment of Diffusion

Krupp et al., Mater. Corr., **57** (2006) 263 U. Buschmann , Dissertation, Univ. Siegen 2008

2D Finite-Difference Treatment of Diffusion (Crank Nicolson implicit approach)

D=*f*(*x*,*y*) (e.g. PVM)

bulk and gb diffusion

Parallelization (e.g. PVM, GPU/CUDA)

ChemApp / system data base initialisation

distributed equilibrium calculations

C – Main program

FD diffusion calculation

user interface

Finite-Difference Simulation of Internal Precipitation of Cr-Nitrides of Moderate Stability (NiCr20, 800°C, N₂)

3

Oxidation of Low-Cr Steels (X60)

(1.43wt% Cr, 550°C, air)

2D Simulation of Internal Oxidation

Inner Oxide-Scale Growth (X60)

(1.43wt% Cr, 550°C, air)

The Cellular Automata Approach

Dividing Space into Lattice

Defining a Neighbourhood (von Neumann, Moore)

Defining State Variables (e.g.: 0,1)

Defining Transition Rules (applied simultaneously to all cells)

The Cellular Automata Approach (Chopard and Droz)

Diffusion Profile (Chopard and Droz)

The Cellular Automata Approach for Internal Precipitation (Zhou and Wei)

Initialization

Diffusion: N stepwise to the right B every 20th iteration to the left

(Implementation ChemApp possible)

solvent: inert (I)

solute:	2
0010101	-

solute: active element (B)

nitrogen (N)

Zhou and Wei, Scripta Mater., 37 (1997) 1483

Transition: B+N=>BN:

The Cellular Automata Approach for Internal Precipitation (Zhou and Wei)

Stable state (AN)

Transition $p_{\rm T}$:

Transition p_{T}^{r} :

Zhou and Wei, Scripta Mater., 37 (1997) 1483

Internal Precipitation (Zhou and Wei) + N- Diffusion (Chopard and Droz)

(increased B counter diffusion)

location y (arbitrary units)

location y (arbitrary units)

512 x 512 cells 20000 iterations

location x (arbitrary units)

512 x 512 cells 1500 iterations location x (arbitrary units)

Precipitation + N Diffusion (Chopard and Droz)
+ B Diffusion in the Internal Precipitation Zone

□ solvent (inert)

active element B

nitride (BN)

nitride sink (min 5 nitrides within R=5cells)

Precipitation + B Diffusion in the Internal Precipiation Zone – Concentration Profile

Precipitation + B Diffusion in the Internal Precipitation Zone – Penetration Depth

Grain boundary diffusion

solute in grain (*i* and *i*+1)

solute in grain boundary (*i* and *i*+1)

location y (arbitrary units)

512 x 512 cells 3000 iterations T_{tot} =100h, T=800°C location x (arbitrary units)

3

Conclusions and Future Aspects

- Classical Wagner theory is limited to special scenarios
- Finite Difference: easy combination with ChemApp
- Cellular Automata:
 - -nucleation and growth
 - -3D effects: various diffusion paths (e.g., GB/bulk diffusion
- Problems to be solved:
 - -combination of small and large concentrations
 - -implementation of ChemApp
- more info: u.krupp@hs-osnabrueck.de