Incorporation of MnO_x as well as Sulphides to the HotVeGas database

GTT-Technologies

GTT-Workshop, 2-4. Juli 2014, Herzogenrath

K. Hack, T. Jantzen, E. Yazhenskikh, M. Müller

Contents of presentation

- GTT-Technologies
- Introduction
- Addition of Sulphides
- Addition of MnO_x new ternary systems
- Conclusions
- Future developments

JÜLICH HotVeGas Oxide Database

Addition of MnS

- Binary systems
 - The Mn-S and MnO-MnS phase diagrams
 - The CaS-MnS phase diagram
 - The FeS-MnS phase diagram
 - The proposed MgS-MnS and MnS-SiO₂ phase diagrams
 - The AI_2S_3 - K_2S and K_2S - Na_2S phase diagrams
- Ternary systems
 - The ternary $AI_2O_3 MnO MnS$ system
 - The ternary CaS FeS MnS system
 - The ternary CaS MgS MnS system
 - The ternary FeS MgS MnS system
 - The ternary MnO MnS SiO₂ system
- Quaternary system Al₂O₃ MnO MnS SiO₂

Mangan oxide - Mangan sulphide phase diagram

CaS-MnS phase diagram

C.-H. Leung and L-H. van Vlack, J. Am. Ceram. Soc., 62 [11-12], (1979), pp.613-616.

Proposed MgS-MnS and MnS-SiO₂ phase diagrams

CaS-MgS phase diagram (revised)

GTT-Technologies

CaS-MnS and MgS-MnS form completely miscible solid solution Oldhamite. CaS-MgS should have the same behaviour.

Previous calculation.

B.J. Skinner, F.D. Luck, Amer. Mineral., Vol.56 (1971), pp. 1269-1296.

FeS-MnS phase diagram

GTT-Technologies

B.J. Skinner, F.D. Luck, Amer. Mineral., Vol.56 (1971), pp. 1269-1296.

The isothermal section at 1500° C in Al₂O₃-MnO-MnS

GTT-Technologies

netally determined phase equilibrium data in the present study. Legend: MS=MnS, MO=MnO, AO=Al₂O₃, Ga=MnAl₂O₄, L=Liquid.

D.-H. Woo, Y.-B. Kang, H. Gaye and H.-G. Lee, ISIJ Internat., Vol. 49 (2009), No. 10, pp. 1490-1497.

The Al₂O₃-MnO-MnS ternary system

Isothermal sections in CaS-MgS-MnS

Liquidus surface in MnO-MnS-SiO₂

Isothermal section at 1200°C in MnO-MnS-SiO₂

D.-H. Woo, Y.-B. Kang, H.Gaye and H.-G. Lee, ISIJ Intern., 49 (2009), pp. 1490-1497.

Isothermal section at 1250°C in MnO-MnS-SiO₂

Quaternary Al₂O₃-MnO-MnS-SiO₂ at 1200° C

Ternary systems with the addition of MnO_x

- The ternary Al₂O₃-FeO_x-MnO_x system
- The ternary Al₂O₃-MnO-SiO₂ system
- The ternary CaO-MnO-SiO₂ system
- The ternary FeO-MnO-P₂O₅ system
- The ternary FeO_x-MnO_x-SiO₂ system
- The Iron-Cordierite phase in Al₂O₃-FeO-MgO-MnO-SiO₂

Modelling of Mn-containing phases

GTT-Technologies	
Phase	Description
МеО	(<i>Al</i> + ³ , <i>Ca</i> + ² , <i>Cr</i> + ³ , <i>Mn</i> + ² , <i>Mn</i> + ³ , <i>Fe</i> + ² , <i>Fe</i> + ³ , <i>Mg</i> + ² , <i>Na</i> + ¹ , <i>Va</i>)(<i>O</i> - ²)
Cubic Spinel	(Al ⁺³ ,Cr ⁺² ,Cr ⁺³ ,Fe ⁺² ,Fe ⁺³ ,Mg ⁺² ,Mn ⁺²)(Al ⁺³ ,Ca ⁺² ,Cr ⁺³ , Fe ⁺² ,Fe ⁺³ ,Mg ⁺² , Mn ⁺² ,Mn ⁺³ ,Mn ⁺⁴ ,Va) ₂ (Cr ⁺² , Fe ⁺² , Mg ⁺² ,Va) ₂ (O ⁻²) ₄
Tetragonal Spinel	(Cr ⁺² , Cr ⁺³ , Mn ⁺² , Mn ⁺³)(Al ⁺³ , Cr ⁺³ , Fe ⁺³ , Mn ⁺² , Mn ⁺³ , Va) ₂ (O ⁻²) ₄
Corundum	(Al ⁺³ , Cr ⁺² ,Cr ⁺³ ,Fe ⁺³ ,Mn ⁺³) ₂ (Cr ⁺³ ,Va)(O ⁻²) ₃
Bixbyte	$(Cr^{+3}, Fe^{+3}, Mn^{+3})_2 (O^{-2})_3$
Olivine	(Ca ⁺² , Fe ⁺² ,Mg ⁺² ,Mn ⁺²)(Ca ⁺² ,Fe ⁺² ,Mg ⁺² ,Mn ⁺²)(Si ⁺⁴)(O ⁻²) ₄
Rhodonite	(<i>Mg</i> ⁺² , <i>Mn</i> ⁺² , <i>Ca</i> ⁺² , <i>Fe</i> ⁺²)(<i>Si</i> ⁺⁴)(<i>O</i> ⁻²) ₃
Protopyroxene	(Ca ⁺² ,Mg ⁺² ,Mn ⁺²)(Si ⁺⁴)(O ⁻²) ₃
C2S-C3P	$(\underline{Ca^{2+}}, Cr^{2+}, Mg^{2+}, \underline{Mn^{+2}})_3 (\underline{Ca^{2+}}, \underline{Va})_1 (\underline{P^{5+}}, \underline{Si^{4+}})_2 (O^{2-})_8$
C2S-Prime	$(\underline{Ca^{2+}}, Mg^{2+}, Fe^{2+}, \underline{Mn^{+2}})_3 (\underline{Ca^{2+}}, \underline{Va})_1 (\underline{P^{5+}}, \underline{Si^{4+}})_2 (O^{2-})_8$
Cordierite	$(Al_2Si_5O_{18}^{10-})_1(Fe^{2+},Mg^{2+},Mn^{2+})_2(Al^{3+},Mg^{2+})_1 (Al^{3+},Si^{4+})_1$
Wollastonite	$(\underline{Ca^{2+}}, Fe^{2+}, Mg^{2+}, Mn^{2+})_1 (Si^{4+})_1 (O^{2-})_3$

The isothermal section at 800° C in Al₂O₃-MnO-SiO₂

The liquid lines in Al₂O₃-MnO-SiO₂

The liquidus surface in Al₂O₃-MnO-SiO₂

F.Y. Galakhov, Uch. Zap. Kazan. Gos. Univ., No.5, (1957), pp.525-531.

Orthosilicate section in CaO-MnO-SiO₂

F.P. Glaser, Am. J. Sci., 259 [1], (1961), pp. 46-59.

Metasilicate section in CaO-MnO-SiO₂

GTT-Technologies

Fig. 3.257. Composition section $\text{CaO}\cdot\text{SiO}_2$ -MnO $\cdot\text{SiO}_2$ after Glasser [1, 2]. Recently, a new ternary solution phase on the CaO $\cdot\text{SiO}_2$ -MnO $\cdot\text{SiO}_2$ section was reported by Mikirticheva et al. [3].

F.P. Glaser, Am. J. Sci., 259 [1], (1961), pp. 46-59.

Liquidus surface in CaO-MnO-SiO₂

F.P. Glaser, Am. J. Sci., 259 [1], (1961), pp. 46-59.

Isothermal section at 1170°C in FeO-MnO-SiO₂

Isothermal section at 1240°C in FeO-MnO-SiO₂

GTT-Technologies

Rdn + OI

MaySilo,

100 MvD

Liquidus surface in FeO-MnO-SiO₂

GTT-Technologies

MnO

Liquidus surface in Fe₃O₄-Mn₃O₄-SiO₂ in air

Part of liquidus surface in FeO-MnO-P₂O₅

GTT-Technologies

47

Cordierite in Al₂O₃-FeO-MgO-MnO-SiO₂

GTT-Technologies

Al₄Mg₂Si₅O₁₈ (Cordierite)

R.M. Smart, F.P. Glaser, Ceram. Int., 7 (1981), No.3,pp.90-97 **Cordierite**, which was discovered in 1813, is named after the French geologist Louis Cordier. The old name *iolithe* comes from the Greek words for violet and stone. Another old name is *dichroite*, a Greek word meaning "two-colored rock".

Al₄Mn₂Si₅O₁₈ (Mn-Cordierite)

Slag Atlas, 2nd Ed., Verlag Stahl-Eisen, Düsseldorf, 1995.

Modelling of Cordierite in Al₂O₃-FeO-MgO-MnO-SiO₂

GTT-Technologies

 $M_4Fe_2Si_5O_{18}+Al_4Mn_2Si_5O_{18}$ (mol/mol)

In the cordierite solid solution system $(Mg_2Al_4Si_5O_{18}-Fe_2Al_4Si_5O_{18}-Mn_2Al_4Ai_5O_{18})$ complete miscibility is obtained in laboratory experiments between the magnesium and iron end members and also between iron and manganese components (Eberhard, 1962). In nature, however, cordierite is usually enriched in magnesium

H.C. Dasgupta, F. Seifert and W. Schreyer, Contr. Mineral. And Petrol., 43, (1974), pp, 275-294.

Cordierite : $(AI_2Si_5O_{18})^{6-}$ (Fe²⁺, Mg²⁺, Mn²⁺)₂(<u>AI</u>³⁺, Mg²⁺)(<u>AI</u>³⁺, Si⁴⁺)

Cordierite in Al₂O₃-FeO-MgO-MnO-SiO₂

GTT-Technologies

$AI_2Mg_2Si_5O_{18}(\underline{AI},Mg)(\underline{AI},Si)$

Conclusions

- GTT-Technologies
 - The liquid phase in all subsystems was evaluated using associate species model,
 - All systems were assessed using experimental phase diagram information.
 - MnS has so far been integrated into the reduced core system CaS-FeS-MgS-MnO-Al₂O₃-SiO₂. All binaries, 5 ternary and 1 quaternary systems were described. The stoichiometric phases 8MnO·MnS·3SiO₂ and 25MnO·MnS·9SiO₂ were incorporated.
 - The solubility ranges of 12 solid solution phases containing Mn were described using the sublattice model. 7 ternary systems were evaluated.

Future developments

Ternaries with $MeSO_4$ (using $MeO + SO_3 \rightarrow MeSO_4$)

- $MeS MeSO_4(SO_3) MeO$
- (Me1)SO₄-(Me2)SO₄-(Me3)SO₄

Thanks for your attention !

