

Simulation Analysis for Clinker Manufacturing Process and Support of Resolving Production Technical Issues in UBE-Group

Tatsuro Izumi Process Technology Research Laboratory

<u>Agenda</u>

Introduction

- The Study of Cement Manufacturing Process
 - Simulation System
 - Low-temperature Burning System
 - Evaluation an effect of energy saving using mineralizer

Summary

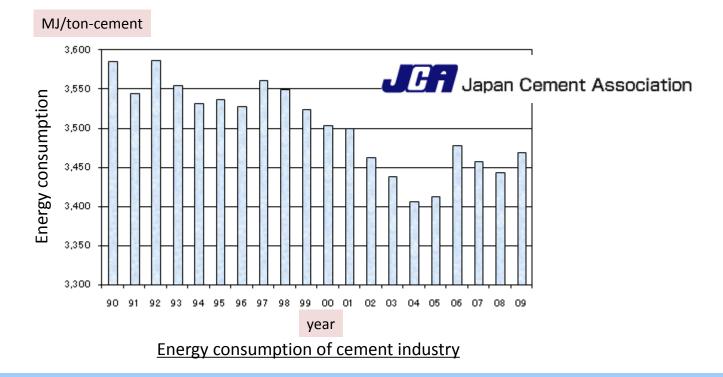
(•Introduction of industrial Application in UBE-Group)

Introduction - Cement Factories in UBE

Isa Limestone Mine and Cement Factory

Kanda Cement Factory

Ube Cement Factory



Private Highway (28km)

Introduction - Three Important Subjects for Cement Industry

- Reduce Energy consumption(Reduce Carbon Dioxide Emission)
- Increase Waste Usage in Cement manufacturing
- Reduce Electric Power consumption

2014 GTT Annual User's Meeting

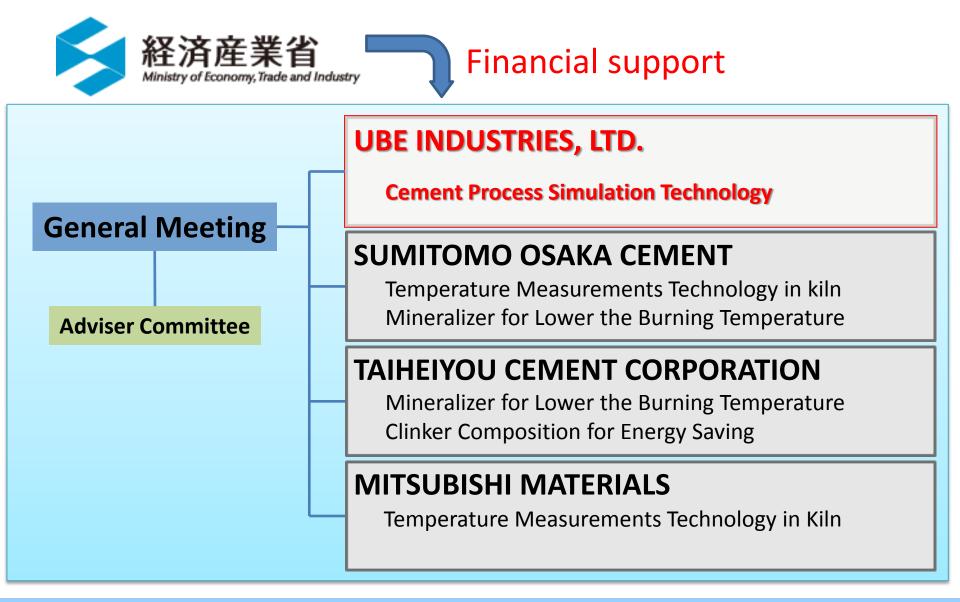
Innovative Fundamental Technology Development for Cement making $2010 \sim 2014$

革新的セメント製造プロセス基盤技術開発

経済産業省 Ministry of Economy, Trade and Industry

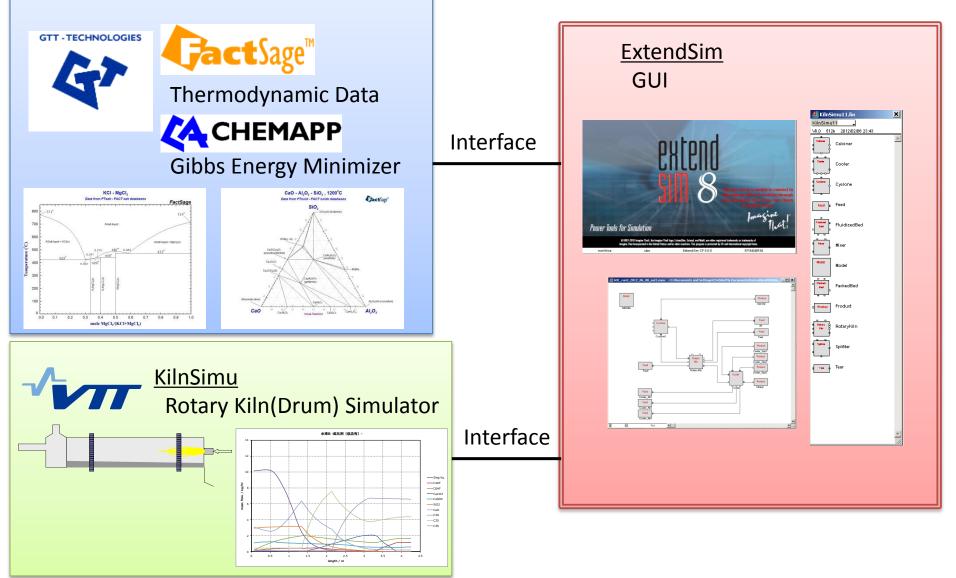
METI : Ministry of Economy, Trade and Industry

SUMITOMO OSAKA CEMENT CO., LTD.



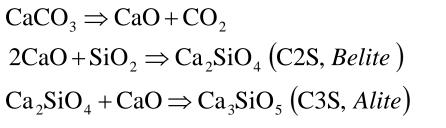
Final Goal:

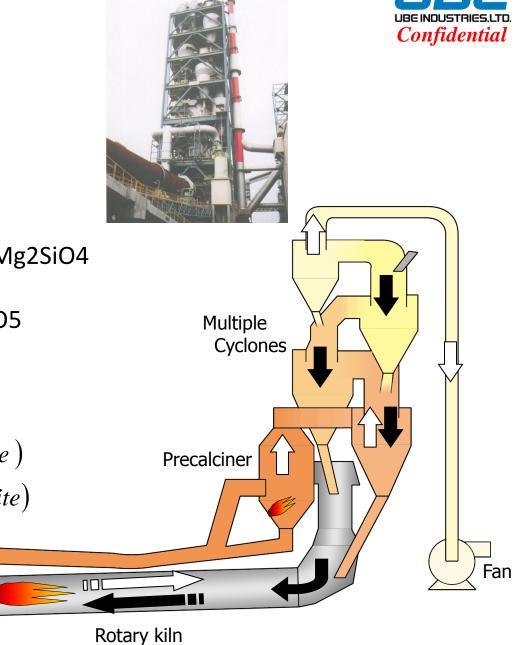
8% energy reduction in cement manufacturing process


<u>R&D Formation for Project</u>

Simulation System -KilnSimu+-

Reaction in Cement Process

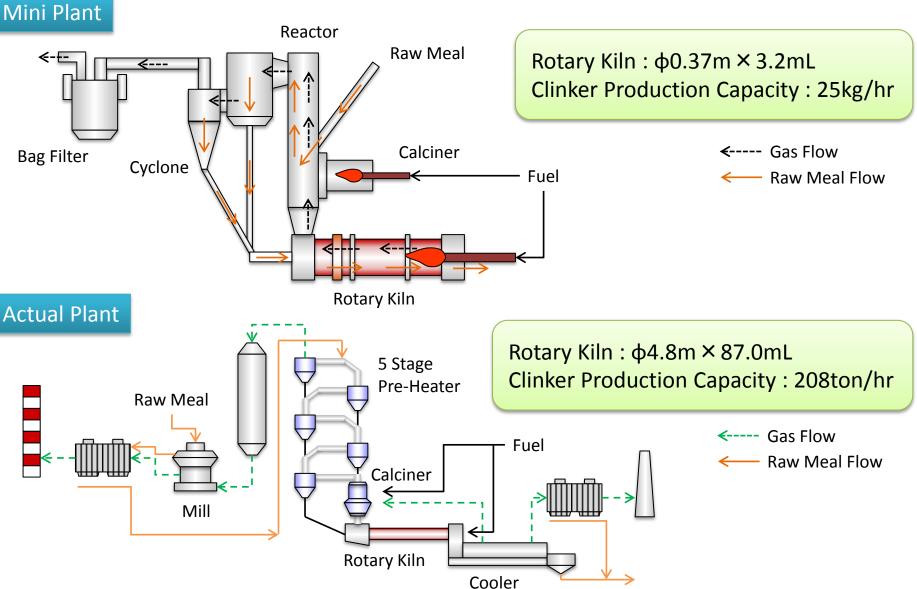

☆Counter Current Process


☆12 (or more)System Elements Fe-Ca-K-CI-S-Si-AI-Mg-Na-O-N-C

\bigstar Formation of clinker phases

Alite3CaO*SiO2BeliteCa2SiO4,Fe2SiO4,Mg2SiO4Aluminate3CaO*Al2O3FerriteCa2Al2O5 Ca2Fe2O5

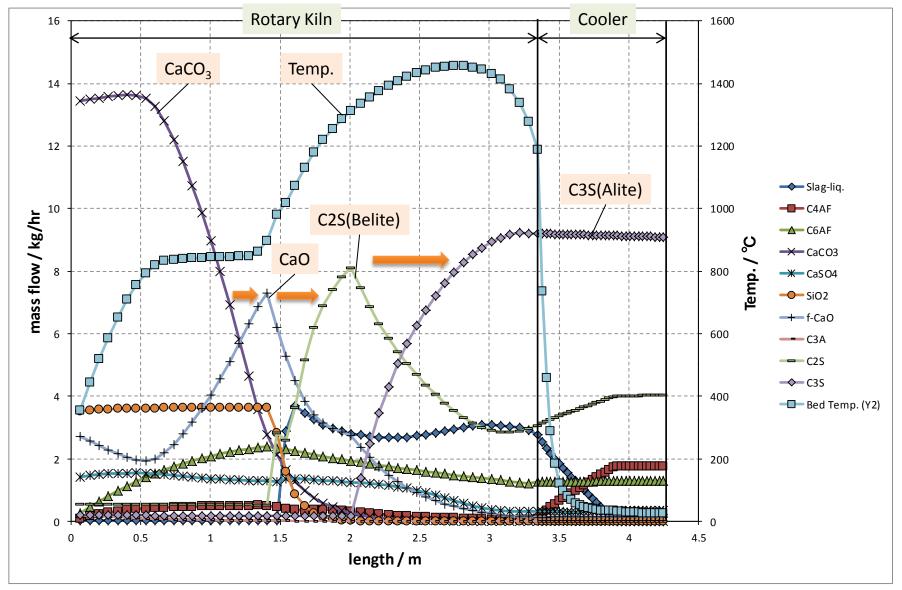
☆ Main Reaction



Gas Flow

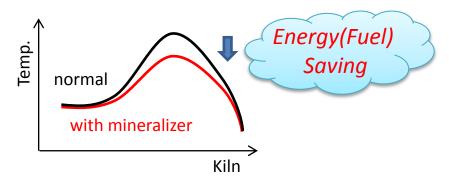
Raw Material

Cement Manufacturing Process (Target of Modeling)



2014 GTT Annual User's Meeting

Calculated Compounds Profile (ex. Mini Plant)

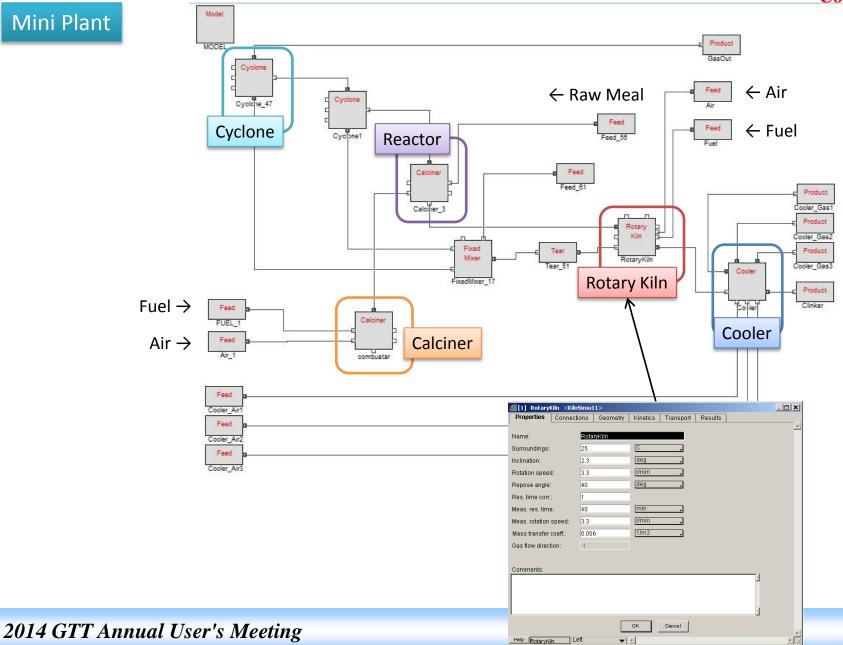


²⁰¹⁴ GTT Annual User's Meeting

Low-temperature Burning System Using Mineralizer

Well known is the effect of the burning temperature drop by adding mineralizer(CaF2) in clinker manufacturing process.

 Why is there no influence on clinker composition of burning temperature drop? (why does reactions progress with temperature being low?)


⇒We evaluated an influence on kinetic constants by using mineralizer

<u>The results of mini-plant test for the study of low-temperature burning</u> (Experimented by Sumitomo Osaka Cement Corp.)

		part A	part B	part C	
		normal clinker	with mineralizer	with mineralizer	
			(low content)	(optimum)	
Max Gas Temp.	C	-	-	-	
Max Bed Temp.	C	1446.9	──→ 1406.8	→ 1361.1	
Kiln-end Gas Temp.	°C	991.1	963.1	933.3	
Calciner Gas Temp.	°C	1173.9	1175.1	1173.4	
C3S	wt%	50.50	44.90	37.80	
C2S	wt%	27.70	35.00	40.90	
C3A	wt%	5.30	3.50	3.30	
C4AF	wt%	10.20	10.10	11.40	
f-CaO (desired < 1% for easily sintering)	wt%	0.55	0.61	0.48	

Mini-Plant Model by KilnSimu+

Comparison to Measured Value

(before kinetic constants tuning)

		part A		part B		part C	
		normal clinker		with mineralizer		with mineralizer	
		Measured	Calculated	Measured	Calculated	Measured	Calculated
Max Gas Temp. °C			1572.4		1518.0		1460.3
Max Bed Temp. °C		1446.9	1457.0	1406.8	1416.6	1361.1	1364.5
Kiln-end Gas Temp. °C		991.1	981.2	963.1	953.9	933.3	920.8
Calciner Gas Temp. °C		1173.9	1171.5	1175.1	1185.1	1173.4	1180.0
C3S wt ^o	:%	50.50	53.26	44.90	43.42	37.80	33.96
C2S wt ^o	:%	27.70	22.41	35.00	28.96	40.90	35.46
C3A wt ^o	:%	5.30	6.06	3.50	9.22	3.30	9.85
C4AF wt ^o	:%	10.20	10.07	10.10	7.36	11.40	6.80
f-CaO (desired < 1% for easily sintering)	:%	0.55	0.60	0.61	1.30	0.48	2.64

good agreement

different

• Result of part A (normal clinker) agree with the experimental data

• Result of part B and C (with mineralizer) have difference

(next)

tuning up the kinetic constants to match the experimental data

mass flow / kg/hr C4AF(tuning) C6AF(tuning) CaCO3(tuning) f-CaO(tuning) C2S(tuning) C3S(tuning) 2 0.5 1.5 2 2.5 3.5 0 1 3 length/m part B

C2S(Belite)

Cooler

C3S(Alite)

 Slag-liq. - C4AF

- C6AF

C2S — — C3S

Slag-liq.(tuning)

CaCO3 f-CaO

Reactions progress actively

before tuning

after tuning

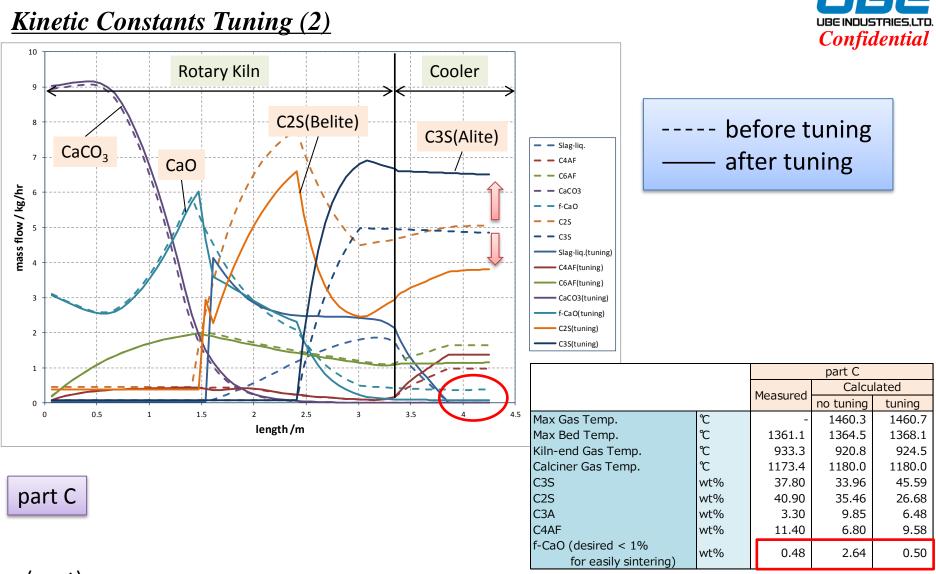
		part B				
			Measured	Calculated		
			Measureu	no tuning	tuning	
5	Max Gas Temp.	°C	-	1518.0	1518.0	
	Max Bed Temp.	°C	1406.8	1416.6	1417.4	
	Kiln-end Gas Temp.	°C	963.1	953.9	950.0	
	Calciner Gas Temp.	°C	1175.1	1185.1	1185.1	
	C3S	wt%	44.90	43.42	48.71	
	C2S	wt%	35.00	28.96	24.98	
	C3A	wt%	3.50	9.22	6.28	
	C4AF	wt%	10.10	7.36	9.77	
	f-CaO (desired < 1% for easily sintering)	wt%	0.61	1.30	0.61	

Kinetic constants tuning is successful.

2014 GTT Annual User's Meeting

CaO

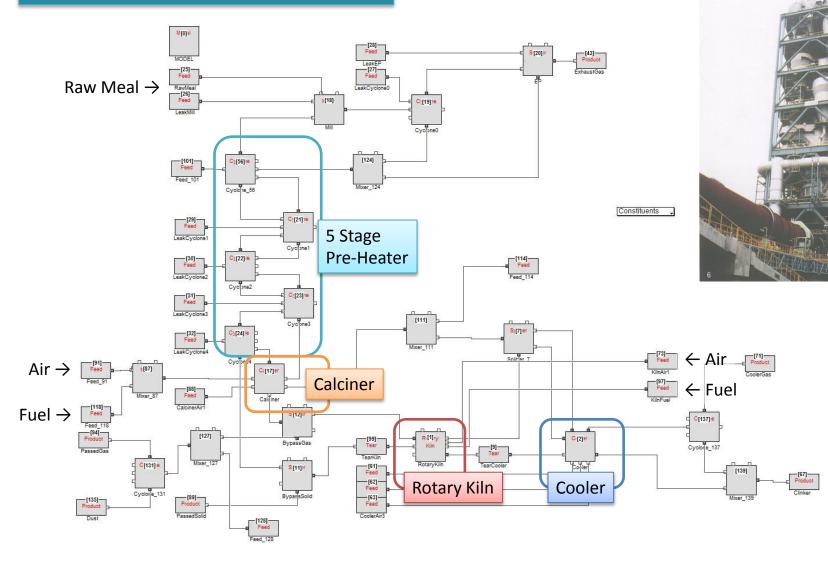
Rotary Kiln


12

10

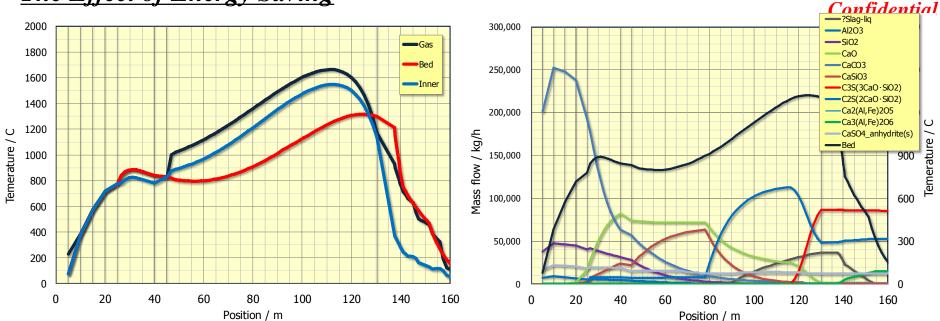
8

CaCO₃


(next)

evaluation an effect of energy saving by using mineralizer in the actual plant model

Actual Plant Model by KilnSimu+



NSP(new suspension preheater) Kiln

2014 GTT Annual User's Meeting

The Effect of Energy Saving

		normal clinker	with mineralizer	difference
Max.Gas Temp.	ĉ	1763.2	1667.4	-95.8
Max.Bed Temp.	°C	1410.7	1319.3	-91.4
C3S(3CaO·SiO2)	wt%	60.58	43.52	
C2S(2CaO·SiO2)	wt%	15.89	26.96	
C3A	wt%	9.48	8.27	
C4AF	wt%	8.52	7.31	
f-CaO	wt%	0.32	0.71	
Heat Comsumption	kcal/kg	913.5	843.7	-69.8 (Δ7.6%)

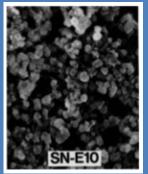
Validation of energy saving

2014 GTT Annual User's Meeting

UBE INDUSTRIES.LTD.

<u>Summary</u>

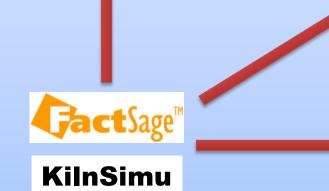
Application of FactSage/ChemApp/KilnSimu interface plays an important role in analysis of Cement clinker manufacturing process, especially in developing a study of "low-temperature burning system using mineralizer".


- □ First, we examined the low temperature clinker burning test by mini-plant.
- Next, we tuned up the simulation parameters(kinetic constants) to match the results of experiment.
- Finally, we evaluated an effect of energy reduction and an influence on kinetic constants by using mineralizer in the actual plant model.

(In the future)


We're planning to play the demonstration test of this system in the actual plant.

UBE INDUSTRIES,LTD.



<u>silicon nitride(Si₃N₄)</u> the study of introduction of kiln for burning process

steel(billets, casting)

the study of energy saving operation in electric furnace

UBE STEEL CO.,LTD.

magnesia(MgO)

analysis for kiln burning process (removing impurities)

Thank you !