Modelling non-ferrous processes and the importance of the gas phase

dr. Sander Arnout, dr. Els Nagels

InsPyro

5 years InsPyro: references

InsPyro approach

= Knowledge centered approach

- Useful to run a process
- Control depends on model
- Changes are based on physics, thermodynamics...
- Mechanisms get unraveled
- Transferrable

Experience: knowledge how to run a process

- Essential to run a process
- Control depends on individual
- Changes based on trial and error
- Mechanisms unclear
- Experience transfer is difficult

InsPyro

InsPyro approach

Knowledge management

- Knowledge in the heads of people is the most readily applicable, but the most volatile:
 - People leave, retire, are on holiday
 - Intuition and feelings may be working most of the time, but may never be thoroughly checked/understood
- Need to develop concepts which are more easily transferable:
 - Define rule of thumb based on mechanisms
 - Actual process model can be useful for complex interactions
 - Summaries, concepts, hypotheses can already be much more tangible than feelings, and can be validated
 - Provide a basis for decision making, experimenting, education of operators

InsPyro

Mission: « Inspiring Metallurgy »

InsPyro <u>improves</u> existing high-temperature processes <u>develops</u> new sustainable processes

InsPyro

Process development

- Stepwise process:
 - 1. Concept from literature or experience
 - 2. Process model to define expected working area
 - 3. Lab or pilot scale experiments
 - 4. Validate process model
 - 5. Scale-up or adjustments
- Nobody will develop a new process without a model
- Yet we run several existing processes without an explicit model

Process improvement

- Similar approach as for development
 - Literature review
 - Advantage: also process data available
 - Construct process model
 - Verify process model with experience
 - Define conditions which are expected to improve the process
 - Use process as test facility

Simple process model

Mainly a mass balance with an indication of heat requirements for one operating point

No need to model all possible reactions!

Ins

Integrated in charge calculation

1.	Copy B I U -	·	5 3 ((# H)	Merge & C	erder -	47- % .	31 .33	Conditional	Format	Cell Ins	nt Delete	Format	Pill T	Sort & Find	ð.		
nna	Saut East			terment		16	Number	-	Formatting *	as Table - 1	Styles *	Celle		Z Uter	Filter * Selec	10		
	The second second	. (VS4)		-Annaru -		1/54	(termine	1201		200791:	4.	2000	24.15	1.4	entes.			-
11	1 • H				1					1 222	1. 7.01	1	1 20		1.1.2	1	1	_
cotto	B	C	D.	E	F	6	H		1	К	1 L.	M	N	0	P	Q	R	_
H .	ARGE CALCULATION	V FOR LEAD R	ECYCLI	ING (S	IMPLI	FIED)	10 m				Inc	Dur	14					
						1.000					1112	r yn						
			Water	Dry	Compo	sition of	dry fraction									Mass bal	lance	
elec	tion of raw materials	Amount (kg)	content	weight	Pb	F	e Sb	Ca	Sī	AL	Na	5	0	c	organics	Pb	Fe	
aste	e .	1000	8.0%	920	90.0%							3.0%	7.0%	6		828	0	
late	5	1000	2.0%	980	97.5%	i i	1.09	8				0.5%	0.5%	1	0.5%	956	0	
oke		25		25				0.5%	1.0%	1.0%				95.0%		0	0	
me		5		5				71.5%	6				28.59	6		0	0	
on t	turnings	70		70		100	0%									0	70	
oda	ash	20		20							43.4%		45.09	% 11.0%		0	0	
1																		
	Model estimation: using then	modynamic calculati	ons															
5								<	-			Recalcu	late					
_						Contract of Contract of Contract	a state of the second stat		14.05			SUGUISCO	ST 577					
4	Temperature		1100 °C	ÿ		eatnee	a/input	DEMO K	wn									
4 5	Temperature		1100 °C	ÿ.		eatnee	a/input	UEMIO K	wn		Re	ady						
4 5 6	Temperature	Total weight	1100 °C (kg)	ÿ		CONTRACTOR OF	ayinput	UEMIO K	WD		Re	ady						
4 5 6 7	Temperature Bullion	Total weight 1738	1100 °C (kg)		Pb	Sb	5	0 O	wn		Re	ady						
4 5 6 7 8	Temperature Bullion	Total weight 1738	1100 °C (kg)	9	Pb 19.1%	Sb 0.6%	5 0.32%	C 0.00%	wn		Re	ady						
4 5 6 7 8 9	Temperature Bullion Slag	Total weight 1738 14	1100 °C (kg)	9	Pb 19.1% CaO	Sb 0.6% SIO2	5 0.32% FeOx	0 0.00% Na20	Na25O4	PbO	Al2O3	ady 						
4 5 6 7 8 9 8 .	Temperature Bullion Slag	Total weight 1738 14	1100 °C (kg)	9	Pb 19.1% CaO 12.8%	5b 0.6% SiO2 37.4%	5 0.32% FeOx 3.9%	0 0.00% Na20 22.5%	Na25O4 0.2%	PbO 0.1%	Al2O3 3.1%	ady 						
4 5 6 7 8 9 0 1 0	Temperature Bullion Slag	Total weight 1738 14	(kg) Solid (9 ghases:	Pb 19.1% CaO 12.8%	Sb 0.6% SiO2 37.4%	5 0.32% FeOx 3.9%	0 0.00% Na2O 22.5%	Na25O4 0.2%	PbO 0.1%	Al2O3 3.1%	ady 						
4 5 6 7 8 9 8 1 2 1	Temperature Bullion Slag	Total weight 1738 14	1100 °C (kg) Solid (9 J phases: 1%	Pb 19.1% CaO 12.8%	Sb 0.6% SiO2 37.4%	5 0.32% FeOx 3.9%	0 0.00% Na20 22.5%	Na25O4 0.2%	PbO 0.1%	Al2O3 3.1%	ady 						
4 5 6 7 8 9 0 1 2 3 4	Temperature Bullion Slag Matte	Total weight 1738 14 159	(kg) Solid (9 a phases: %	Pb 19.1% CaO 12.8% Fe	5b 0.6% 5iO2 37.4%	5 0.32% FeOx 3.9%	0 0.00% Na20 22.5% Na	Na25O4 0.2% Pb	РЬО 0.1%	Al2O3 3.1%	ady 						
4 5 6 7 8 9 0 1 2 3 4 4	Temperature Bullion Slag Matte	Total weight 1738 14 159	(kg) Solid (9 phases: %	Pb 9.1% CaO 12.8% Fe 0.7%	5b 0.6% 5iO2 37.4% 5 16.2%	5 0.32% FeOx 3.9% 0 7.3%	0 0.00% Na2O 22.5% Na 3.8%	Na25O4 0.2% Pb 32.0%	РЬО 0.1%	Al2O3 3.1%	ady.						
4 5 6 7 8 9 0 1 2 3 4 5 6	Temperature Bullion Slag Matte Gas	Total weight 1738 14 159 100	1100 °C (*g) Solid (9 3 phases: 1%	Pb 9.1% CaO 12.8% Fe 10.7% SO2 0.0%	5b 0.6% 5iO2 37,4% 5 16,2%	5 0.32% FeOx 3.9% 0 7.3%	0 0.00% Na2O 22.5% Na 3.8%	Na25O4 0.2% Pb 32.0%	PbO 0.1%	Al2O3 3.1%	ady S.T.						
4 5 6 7 8 9 0 1 2 3 4 5 6 7	Temperature Bullion Slag Matte Gas	Total weight 1738 14 159 100	1100 °C (kg) Solid (9 J phases: 1% 4	Pb 9.1% CaO (2.8% Fe 0.7% \$O2 0.04 k	5b 0.6% 5iO2 37.4% 5 16.2%	5 0.32% FeOx 3.9% 0 7.3%	0 0.00% Na20 22.5% Na 3.8%	Na25O4 0.2% Pb 32.0%	Pb0 0.1%	Al2O3 3.1%	ady						
4 5 6 7 8 9 0 1 2 3 4 5 6 7 8	Temperature Bullion Slag Matte Gas Other phases	Total weight 1738 14 159 100 8	1100 °C (kg) Solid (9 j phases: % 4 kg	Pb 19.1% CaO 12.8% Fe 0.07% SO2 0.04 k Fe exces	5b 0.6% 5iO2 37.4% 5 16.2% 8	5 0.32% FeOx 3.9% O 7.3% kg C excess	0 0.00% Na20 22.5% Na 3.8%	Na25O4 0.2% Pb 32.0%	Pb0 0.1%	Al2O3 3.1%	ady State						
4 5 5 7 8 9 0 1 2 3 4 5 5 7 8 9	Temperature Bullion Slag Matte Gas Other phases	Total weight 1738 14 159 100 8	1100 °C (Xg) Solid p C	9 B phases: 196 kg	Pb 19.1% CaO 12.8% Fe 0.7% SO2 0.04 k Fe exces 0 k	5b 0.6% 5iO2 37.4% 5 16.2% 8 8	5 0.32% FeOx 3.9% 0 7.3% kg C exces 0	0 0.00% Na20 22.5% Na 3.8%	Na25O4 0.2% Pb 32.0%	Pb0 0.1%	Al2O3 3.1%	ady See						
45678901234567890	Temperature Bullion Slag Matte Gas Other phases	Total weight 1738 14 159 100 8	1100 °C (<u>Xg)</u> Solid p (9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Pb 9.1% CaO i2.8% Fe 0.7% SO2 0.04 k Fe exces 0 k raction	5b 0.6% 5iO2 37.4% 5 16.2% g	5 0.32% FeOx 3.9% 0 7.3% kg C exces 0	0 0.00% Na20 22.5% Na 3.8%	Na25O4 0.2% Pb 32.0%	Pb0 0.1%	Al2O3 3.1%	ady.						
4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1	Temperature Bullion Slag Matte Gas Other phases Composition of raw materials Raw material name	Total weight 1738 14 159 100 8 Water fraction	(<u>28</u>) Solid (C	9 phases: % kg lysis dry fi	Pb 9.1% CaO i2.8% Fe 0.7% SO2 0.04 k Fe exces 0 k raction Fe	5b 0.6% 5iO2 37.4% 5 16.2% g g 5 5 5	5 0.32% FeOx 3.9% 0 7.3% kg C excess 0	O 0.00% Na2O 22.5% Na 3.8%	Na25O4 0.2% Pb 32.0%	Pb0 0.1%	Al203 3.1%	ady	6	organics				
4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2	Temperature Bullion Slag Matte Gas Other phases Composition of raw materials Raw material name Plates	Total weight 1738 14 159 100 8 Water fraction 25	1100 °C (Xg) Solid p (Anal	9 phases: % kg lysis dry fi Pb 555	Pb 9.1% CaO 2.2% Fe 0.7% SO2 0.04 k Fe exces 0 k raction Fe	5b 0.6% 5iO2 37.4% 5 16.2% g s 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 0.32% FeOx 3.9% 0 7.3% kg C excess 0 Ca	C 0.00% Na2O 22.5% Na 3.8%	Na25O4 0.2% Pb 32.0%	PbO 0.1% Na	Al2O3 3.1% S 0.5%	o 0 0,5%	с	organics 0.5%				
4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3	Temperature Bullion Slag Matte Gas Other phases Composition of raw materials Raw material name Plates Plates Plates	Total weight 1738 14 159 100 8 Water fraction 2%	1100 °C (Xg) Solid (C Anal 1 97 97	9 phases: % kg lysis dry fi Pb -5%	Pb 9.1% CaO 12.8% Fe 0.7% SO2 0.04 k Fe exces 0 k raction Fe	5b 0.6% 5iO2 37.4% 5 16.2% g s g s 5 b 1.0%	5 0.32% FeOx 3.9% 0 7.3% kg C excess 0 Ca	C 0.00% Na2O 22.5% Na 3.8%	Na25O4 0.2% Pb 32.0%	PbO 0.1% Na	Al2O3 3.1% \$ 0.5% 3.0%	o 0.5% 7.0%	с	organics 0.5%				
4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4	Temperature Bullion Slag Matte Gas Other phases Composition of raw materials Raw material name Plates Paste Cable strippings	Total weight 1738 14 159 100 8 Water fraction 2% 8%	1100 °C (Xg) Solid (C Anal 97 90 90	9 phases: % 4 kg lysis dry fr Pb .5% .5%	Pb 9.1% CaO 12.8% Fe 0.7% SO2 0.04 Fe exces 0 k raction Fe 5.0%	5b 0.6% 5iO2 37.4% 5 16.2% g s 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 0.32% FeOx 3.9% 0 7.3% kg C excess 0 Ca	0 0.00% Na20 22.5% Na 3.8%	Na25O4 0.2% Pb 32.0%	PbO 0.1%	Al203 3.1% 5 0.5% 3.0%	o 0.5% 7.0%	c	organics 0.5% 5.0%				
4 5 6 7 8 9 0 1 2 3 4 5 5 7 8 9 0 1 2 3 4 5	Temperature Bullion Slag Matte Gas Other phases Composition of raw materials Raw material name Plates Paste Cable strippings Lead ingots	Total weight 1738 14 159 100 8 Water fraction 2% 8%	1100 °C (Xg) Solid (C Anal 1 97 90 90 90	9 phases: % kg lysis dry fr >b .5% .0% .0% .9%	Pb 19.1% CaO 12.8% Fe 10.7% SO2 0.04 K Fe exces 0 k raction Fe 5.0%	5b 0.6% 5iO2 37.4% 5 16.2% g 1.0% 5b 1.0%	5 0.32% FeOx 3.9% 0 7.3% kg C excess 0 Ca	0 0.00% Na20 22.5% Na 3.8%	Na25O4 0.2% Pb 32.0%	Pb0 0.1%	AI2O3 3.1% S 0.5% 3.0%	0 0.5% 7.0%	c	organics 0.5% 5.0%				

InsPyr

Stepwise simple process model

Process modelling – Pb recycling

Ins

- Effect of carbon on Pb recycling with CaO-FeO/Fe₂O₃-SiO₂ slag
- High Pb(I) at low reduction, but S-rich and PbS(g) losses

More advanced process model

- Take into account non-equilibrium effects
 - Assume that only a part of the system reaches equilibrium
- Different operating points in a process
 - Split the model for different zones

Fig. 13-Proposed isotherms and "dead man" in lead blast furnaces Ltgtnd: ______ calculated isotherms, ---- visualized isotherms.

Source: Chao, Met. Trans.B, 1981

Not a single operational point, but the conditions change continuously over the height of the blast furnace

- Kinetics limit reactions in cold zone
- Equilibrium can be assumed in
- hot part

Inspiring metallurgy

F

More advanced process model

Especially the heat balance gets more realistic by implementing preheating

InsPyrð

Advantages of a model

- For a continuously running high-temperature plant
 - Noise causes scatter on process data, so difficult to learn from these data
 - Data over a year basically gives few average working points, despite measuring every second/hour/day
 - Experiments can be risky or expensive, certainly time consuming
 - Additional data can be collected at a single point in time but a framework is needed to do the interpretation

Experimental set-ups

- Lab scale can give very relevant information, but not process information
- Ask a very well defined subquestion
 - Measure solubility of a certain element in slag
 - Find melting point of a matte
 - Reductive power of carbon materials
 - Maximum separation efficiency of a dross
 - Evaporation losses upon holding at high T for certain time

EXAMPLES OF THE ADVANTAGES OF A MODEL

Accretion formation

- First step: characterizing the accretion
- Second step: validate with framework and look for solutions
 - Define hypothesis for accretion formation mechanism
 - Can the compounds be avoided by changing the process conditions?
 - Temperature
 - Atmosphere
 - Additions
 - Is the accrection inevitable with the current mix, but linked to certain raw materials?

Accretion formation

Ins

Changing raw materials

- Can they be treated similarly as known materials?
 - Characterization: not only composition but also phase structure
 - 2. Feeding into model
 - 3. Literature may give additional guidelines

Refining process optimisation

- How close is the refining process to the thermodynamic optimum?
 - Additions
 - Final purity of the lead
 - Temperature
- 1. Analysis of the dross
 - Formed phases
 - Lead losses: entrapped or chemically bound
- 2. Verification with thermodynamic model
 - Effect of input composition
 - Influence of temperature
- 3. Define optimisation opportunities

InsPyr6

Not everything fits in a single model

- The first version of a model can not explain everything
 - Kinetics
 - Heating time (linked to enthalpy, but also shape etc.)
 - Reaction time (mixing, settling,...)
 - Undescribed thermodynamics (compounds, rare elements)
- All these aspects can also be modelled, but require a much larger effort
 - CFD
 - Empirical models based on lots of data

Open to partnerships!

- Thermodynamic database construction
- Link to materials properties

InsPyrð

Thermodynamics of the matte

- InsPyro has constructed a model for the matte:
 - Pb-Fe-S-O-Na system at sulphur rich side
 - Diagrams in literature are limited and several interactions have to be "guesstimated"
 - See presentation GTT2013

Gas phase: e.g. RecoPhos model

Fuming reactor (reduction and evaporation of P)

SCOPE newsletter/TPT website

InsPyro

Questions in the RecoPhos process

- Will the thin-film reaction make a difference?
 - Reduction of P to gas phase before combination with Fe?

H. Raupenstrauch, ProcessNet

InsPyro

Questions in the RecoPhos process

- How will the heavy metals behave?
 - Compounds in gas phase vs. activity in slag/metal
- Can we steer the slag:
 - Optimal viscosity
 - Lower/higher melting temperature
 - Higher P yield
 - Some phase diagram optimisation with P_2O_5

Thermodynamics of the gas phase

- Also in other processes, lots of evaporation occurs
 - Of course SO₂, CO...
 - Also impurities As, Cd,...
 - And the main metal, certainly in case of Pb
 - Interaction to form volatile chlorides, oxides, sulphides...
 - E.g. vapour pressure of lead
 - On cooling, complex compounds
 - E.g. sulphates, arsenates, chlorides

The case of Sb

- Sb₂O₃, a stable oxide known to sublime as Sb₄O₆
- FactSage 6.2:
 - Melting at 656°C
 - Evaporation at 2467°C (Sb+O₂)
- FactSage 6.3/4:
 - Melting at 655°C
 - Dissociation at 748/763°C to SbO(g) + SbO₂(s)
 - Full evaporation at 998°C (SbO + O_2)
- Wikipedia:
 - Melting at 650°C
 - Sublimation at 1425°C

InsPyr6

The curious case of Sb

- Stibnite, Sb₂S₃, a known stable sulphide mineral
 - FactSage 6.2: melting at 550°C, boiling at 1534 (Sb₂+S₂)
 - FactSage 6.3: melting at 550°C, sublimation at 556°C (Sb₂S₄+Sb₄S₃)
 - FactSage 6.4: sublimation at 103°C (Sb₂S₃)
 - Phase diagram: well...

InsPyro

Inspiring metallurgy

Lazarev 1973, Urazov 1960

Conclusions

- Modelling provide a framework for problem solving and fits well in a long term knowledge management strategy
- Apart from condensed phases, the gas phase is an integral part of a metallurgical process and need to be modelled with appropriate attention

