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Theory

» Traditional problem statement:
Find minimum of

6=) » u(xf.T,P)nf
a [

Subject to constraints
nf>0 Vi

and
An—b=0

Standard state chemical potentials are assumed to be functions of
temperature and pressure

up = ui (T, P)



* In the most typical case the user specifies T, Pand b

= Target calculations with specified H,V, phase amount or
precipitation or a specified u; also possible



Constrained and extended models

= Additional constraints
» Reaction extents, surface area, charge balances...

= Additional work terms

dU = TdS — pdV + odA + ¢p*Fz;dni" + B - dm [+L;dl;] ...

L; : an intensive work coefficient
[; . an extensive work coordinate
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Constrained and extended models

= Additional constraints applied by defining additional components
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Constrained and extended models

= Additional work terms

» Defining a additional component with a fixed amount is analogous
to new work term with a fixed extensive work coordinate (/;)

G = zﬂini = Eﬂkbk
i K
Hi = z Ay, i Tk

k

= In equilibrium
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Constrained and extended models

= New work terms with a fixed intensive work coefficient (such as
external magnetic field) can be applied by either redefining the
standard state chemical potentials or by defining a new related
component with a fixed chemical potential (the latter option may
be more flexible)



Constrained reaction extent

= New component s are defined for the system stoichiometry

» Changing the amount of a component changes the extent of the
corresponding reaction

dby = 2 ardn; = dég

i

10



Restricted reactions: CaCO; precipitation

l Flash mixing

Water ygedy, ~ wm=) Reaction tube m==) umm=) Product PCC

CO, (gas)

Reactions

Ca(OH)2 « Ca(+2aq) + 20H(-aq)
CO,(g) > CO,(aq)

CO2(aq) + 20H(-aq) «» CO4(-2aq) + H,O
Ca?*(+2aq) + CO;(-2aq) — CaCO4(s)
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Restricted reactions: CaCO, precipitation
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Restricted reactions: CaCO; precipitation

l Flash mixing

Water ygedy, ~ wm=) Reaction tube m==) umm=) Product PCC

CO, (gas)
Reactions
Ca(OH)2 « Ca(+2aq) + 20H(-aq)
CO,(9)(=)CO,(aq)

CO2(aq) + 20H(-aq) «» CO4(-2aq) + H,O
Ca2*(+2aq) + CO4(-2aq)(—>CaCO4(s)
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Restricted reaction example

(Reactant)
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Restricted reaction example

Monchengladbach

Herzogerath

Cologne

Aachen Hbf
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Restricted reaction

» For a multicomponent system, where also a number of

equilibrium reactions are possible having a one or more
constrained reaction means

= The amount of reactants is fixed
or

* The amount of products is fixed
or more generally

» There exist some (any) other linear relationship between the
allowed amounts of species in the system that one could not
deduce from the regular mass balance relationships alone

dby = 2 ardn; = dég
[
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CaCO, precipitation
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CaCO, precipitation
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CaCO, precipitation
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CaCO, precipitation
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Paraequilibrium

* From modelling perspective chemical reactions and mass
transfer between phases are basically identical processes, in
both one or more phase constituents in system are transformed
to different constituents, subject to (normal) mass balance
constraints

* |n rapidly cooling systems a para- equilibrium state may result in
which rapidly diffusing elements have reached equilibrium but
more slowly diffusing elements have remained essentially
Immobile. This means that the for any new phases the relative
amounts of immobile components must be the same as in the
parent phase
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VIr

= Ratio of iron to alloying metal Me in a new phase a is the same
as in the parent phase, so for any changes in system
composition:
dbg, _ bp,

dbjj,  biz,

Where b)C(Z = Zi aX,inf(

* This can be rearranged to

2 (al Medn“) bire z (al Fedn“)

———————— =N\

a

Z(bFe AiMe bMe a; Fe)ldnl
s

Stoichiometric coefficient
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VT
Phase diagrams applying paraequilibrium

assumption integrated to Factsage
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Phase diagrams applying paraequilibrium

assumption integrated to Factsage

Three component
system effectively
becomes two
component system:
C : (Fe+Cr)
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External magnetic field and magnetization

» Chemical potential with an external magnetic field present

u?(T,P,B) = u? (T,P,B = 0) —f m;dB
= Ferromagnetic material with constant magnetization

u?(T,P,B) = u?(T,P,B =0) —m;B

Paramagnetic material with magnetization proprtional to magnetic
field strength
ud(T,P,B) = pu?(T,P,B = 0) — 0.5;B?
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LaCosH, hydride

* The molar magnetic moment is increased by the amount AM per
desorbed mole of hydrogen. Equilibrium exists between two
solid hydrides and hydrogen gas

0.5xH,(g) + LaCosH,, <> LaCosHy 5,

Ap® = p°(LaCosHyp4x) — 1° (léaCOSH4.2)

Au®(B) = Au®(B = 0) +f AMdB
0

In (2 = 2 j BAMdB
"\P2 ) TRT

In equilibrium
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AM / J/(TmolH)
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One can define a new component to the system
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AM / J/(TmolH)
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AM / J/(TmolH)
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Adjusted standard states for biochemical
systems

» Biochemical systems in general
= Have a large number of species

* |t is not possible to model the interactions precisely in a thermochemical
model

= Part of the system of interest can often be considered to be connected
to an infinite reservoir that keeps for example pH and some other
concentrations constant

= => There is a need for adjustments that facilitate calculations in such
systems
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Adjusted standard states for biochemical
systems

* For pH and other activities one can (also) use the ChemApp inbuilt
target calculation option

* For generic Davies equation like adjustment to the activity coefficient
with a fixed ionic strength, one can define a new component with

stoichiometric coefficients equaling z? (corresponding chemical potential
aRTI
1+BVI

contribution
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VT
Surface energies and melting of nanoparticles
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Surface energies and melting of nanoparticles

Surface tension of Fe as a function of oxygen content
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Melting of nanoparticles

Melting point of Pb nanoparticle
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Summary

e By defining new components one can add to the system constraints
either

— to the extents of reactions taking place

— To some other extensive variable (subvolume, area,
charge) corresponding to additional work term in
the free energy equation

e Or one can make adjustments to the standard states of species,
corresponding to work term in external field or analogous
adjustment corresponding to buffered surroundings

29/07/2014
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